- Отрезок МР- биссектрисса угла КМД. Через точку Р проведена прямая, параллельная КМ и пересекающая сторону МД в точке А. Найдите углы треугольника МРА, если угол КМД равен 84 градуса. (все ищите через углы, не через сумму углов в треугольнике Я В 7 КЛАССЕ
1)Дано:тр.АВС,угол С=90 гр,СД-высота,угол АСД=4угламДСВ.
Найти:угол А,угол В.
Решение:
1)пусть угол ДСВ=х гр,тогда угол АСД=4х гр.
х+4х=90
5х=90
х=18
Значит,угол ДСВ=18 гр,угол АСД=72 гр.
2)угол А=90-72=18(гр);угол В=90-18=72(гр).
2)
треугольник АМВ прямоугольный,угол М=90градуссов,угол МВА=30 градуссов,АМ=половине АВ,так как катет лежит против угла в 30 градуссов,АМ=9 см
По теореме Пифагора можем найти ВМ,АВ в квадрате= АМ в квадрате +ВМ в квадрате
ВМ= корень квадратный из АВ в квадрате минус Ам в квадрате
ВМ=9 корней из 3 см
Из вершины А проводишь биссектрису, до пересечения со стороной ВС.
Биссектриса делит угол пополам.
Если угол между биссектрисой и основанием АС - 34°, то угол при основании = 34*2 = 68°
Углы при основании равнобедренного треугольника равны, второй угол при основании тоже равна 68°.
Сумма углов треугольника равна 180°, значит угол при вершине В равен
180 - (68 + 68) = 44° .
Медиана в равнобедренном треугольнике, опущенная к основанию, является и биссектрисой.
Поэтому угол между медианой, проведенной к основанию, и боковой стороной будет равен 44:2 = 22°