1) поскольку один угол 60 градусов, то второй 30, а мы знаем, что катет против угла в 30 градусов равен половине гипотенузы. Отсюда катет1 = 0.5*8=4. Так же мы знаем, что есть теорема пифагора.
8*8=(4*4)+(x*x)
64=16+x*x
x*x=48
x=корень 48
отсюда первый катет можно сократить как 4 корня из 3, второй катет равен 4
2)Площадь равна полупроизведению катетов, то есть (катет1*катет2)/2
(4*4корняиз3)/2, или (16корнейиз3)/2, или 8 корней из 3
3)Радиус описанной окружности - это половина ее диаметра, а диаметром описанной окружности вокруг прямоугольного треугольника - это его гипотенуза. Значит, радиус - это половина гипотенузы. 8:2=4
Дано: Хорды AB=CD пересекаются в точке О. Доказать: AO=CO, DO=BO.
Док-во: Соединим точки A B C D как на рисунке и рассмотрим треугольники ABD и CDB. Равные хорды стягивают равные дуги, значит вписанные углы ADB и CBD равны, а вписанные углы DAB и BCD опираются на одну и ту же дугу, значит они равны. Поскольку в треугольнике сумма углов равна 180°, то и оставшиеся углы ABD и CDB равны. Из равенства этих двух углов (<ABD=<CDB) следует, что △DOB - равнобедренный. => DO=BO. Поскольку AB=AO+BO и CD=DO+CO, а AB=CD, то и AO=CO, чтд.
1) Катет 1= 4 корня из 3
катет 2= 4
2) 8 корней из 3
3) 4
Объяснение:
1) поскольку один угол 60 градусов, то второй 30, а мы знаем, что катет против угла в 30 градусов равен половине гипотенузы. Отсюда катет1 = 0.5*8=4. Так же мы знаем, что есть теорема пифагора.
8*8=(4*4)+(x*x)
64=16+x*x
x*x=48
x=корень 48
отсюда первый катет можно сократить как 4 корня из 3, второй катет равен 4
2)Площадь равна полупроизведению катетов, то есть (катет1*катет2)/2
(4*4корняиз3)/2, или (16корнейиз3)/2, или 8 корней из 3
3)Радиус описанной окружности - это половина ее диаметра, а диаметром описанной окружности вокруг прямоугольного треугольника - это его гипотенуза. Значит, радиус - это половина гипотенузы. 8:2=4
Объяснение:
Дано: Хорды AB=CD пересекаются в точке О. Доказать: AO=CO, DO=BO.
Док-во: Соединим точки A B C D как на рисунке и рассмотрим треугольники ABD и CDB. Равные хорды стягивают равные дуги, значит вписанные углы ADB и CBD равны, а вписанные углы DAB и BCD опираются на одну и ту же дугу, значит они равны. Поскольку в треугольнике сумма углов равна 180°, то и оставшиеся углы ABD и CDB равны. Из равенства этих двух углов (<ABD=<CDB) следует, что △DOB - равнобедренный. => DO=BO. Поскольку AB=AO+BO и CD=DO+CO, а AB=CD, то и AO=CO, чтд.