Расчет характеристик
Площадь сечения
F = F1 - F2 - F3;
где F1 - площадь прямоугольника 1;
F2 - площадь прямоугольника 2;
F3 - площадь круга 3.
F1 = h1 x b1 = 45 x 60 = 2700 мм²;
F2 = h2 x b2 = 15 x 45 = 675 мм²;
F3 = PI x R32 = PI x 7,5² = 176.715 мм²;
F = 2700 - 675 - 176.715 = 1848.285 мм².
Cтатические моменты
Обозначим начало координат в самой левой нижней точке сечения.
Тогда статический момент сложной фигуры относительно оси Х равен сумме статических моментов простых фигур составляющих эту фигуру.
Sx = Sx1 - Sx2 - Sx3;
где Sx1 - статический момент прямоугольника 1;
Sx2 - статический момент прямоугольника 2;
Sx3 - статический момент круга 3.
Sx1 = F1 x Xc1 = 2700 x 30 = 81000 мм³;
Sx2 = F2 x Xc2 = 675 x 11.25 = 15187.5 мм³;
Sx3 = F3 x Xc3 = 176.715 x 29.9 = 3976.0782 мм³;
Sx = 81000 - 15187.5 - 3976.0782 = 61836.422 мм³.
Cтатический момент сложной фигуры относительно оси Y равен сумме статических моментов простых фигур составляющих эту фигуру.
Sy = Sy1 - Sy2 - Sy3;
где Sy1 - статический момент прямоугольника 1;
Sy2 - статический момент прямоугольника 2;
Sy3 - статический момент круга 3.
Sy1 = F1 x Yc1 = 2700 x 22.5 = 60750 мм³;
Sy2 = F2 x Yc2 = 675 x 7.5 = 5062.5 мм³;
Sy3 = F3 x Yc3 = 176.715 x 30 = 5301.4376 мм³;
Sy = 60750 – 5062.5 - 5301.4376 = 50386.062 мм³.
Центр тяжести
Зная площадь сечения и его статические моменты можно определить координаты центра тяжести по следующим формулам:
Xc=Sx/F, Yc=Sy/F
Xc = 61836.422 : 1848.285 = 33,4561 мм;
Yc = 50386.062 : 1848.285 = 27,260975 мм.
Значения координат получены относительно выбранного начала координат O.
ответ: r=1 1/3 cm
R=13.5 cm
Объяснение:
Половина периметра треугольника равна:
p=(3+25+26):2=27cm
Площадь треугольника по т. Герона S=sqrt(p(p-a)(p-b)(p-c))=
=sqrt(27*24*2*1)=3*sqrt(3*3*2*4*2)=3*3*4=36 cm²
С другой стороны S=pr= 27*r=36
=> r=36/27=4/3= 1 1/3 cm - радиус вписанной окружности.
Теперь найдем радиус описанной окружности.
Найдем cos угла , лежащего напротив стороны 3 см по т. косинусов.
9= 625+676-2*25*26*сos x
9=1301-50*26*cos x
1292-1300*cos x=0
cos x= 1292/1300=323/325
Найдем sinx =sqrt (1-(323/325)²)=sqrt( (325²-323²)/325²)=
=sqrt((325+323)(325-323)/325²)=2*sqrt(324)/325=4*9/325=36/325
=>по т синусов имеем 3/sinx=2R
3*325/36=2R
325/12=2R
R=325/24
Расчет характеристик
Площадь сечения
F = F1 - F2 - F3;
где F1 - площадь прямоугольника 1;
F2 - площадь прямоугольника 2;
F3 - площадь круга 3.
F1 = h1 x b1 = 45 x 60 = 2700 мм²;
F2 = h2 x b2 = 15 x 45 = 675 мм²;
F3 = PI x R32 = PI x 7,5² = 176.715 мм²;
F = 2700 - 675 - 176.715 = 1848.285 мм².
Cтатические моменты
Обозначим начало координат в самой левой нижней точке сечения.
Тогда статический момент сложной фигуры относительно оси Х равен сумме статических моментов простых фигур составляющих эту фигуру.
Sx = Sx1 - Sx2 - Sx3;
где Sx1 - статический момент прямоугольника 1;
Sx2 - статический момент прямоугольника 2;
Sx3 - статический момент круга 3.
Sx1 = F1 x Xc1 = 2700 x 30 = 81000 мм³;
Sx2 = F2 x Xc2 = 675 x 11.25 = 15187.5 мм³;
Sx3 = F3 x Xc3 = 176.715 x 29.9 = 3976.0782 мм³;
Sx = 81000 - 15187.5 - 3976.0782 = 61836.422 мм³.
Cтатический момент сложной фигуры относительно оси Y равен сумме статических моментов простых фигур составляющих эту фигуру.
Sy = Sy1 - Sy2 - Sy3;
где Sy1 - статический момент прямоугольника 1;
Sy2 - статический момент прямоугольника 2;
Sy3 - статический момент круга 3.
Sy1 = F1 x Yc1 = 2700 x 22.5 = 60750 мм³;
Sy2 = F2 x Yc2 = 675 x 7.5 = 5062.5 мм³;
Sy3 = F3 x Yc3 = 176.715 x 30 = 5301.4376 мм³;
Sy = 60750 – 5062.5 - 5301.4376 = 50386.062 мм³.
Центр тяжести
Зная площадь сечения и его статические моменты можно определить координаты центра тяжести по следующим формулам:
Xc=Sx/F, Yc=Sy/F
Xc = 61836.422 : 1848.285 = 33,4561 мм;
Yc = 50386.062 : 1848.285 = 27,260975 мм.
Значения координат получены относительно выбранного начала координат O.
ответ: r=1 1/3 cm
R=13.5 cm
Объяснение:
Половина периметра треугольника равна:
p=(3+25+26):2=27cm
Площадь треугольника по т. Герона S=sqrt(p(p-a)(p-b)(p-c))=
=sqrt(27*24*2*1)=3*sqrt(3*3*2*4*2)=3*3*4=36 cm²
С другой стороны S=pr= 27*r=36
=> r=36/27=4/3= 1 1/3 cm - радиус вписанной окружности.
Теперь найдем радиус описанной окружности.
Найдем cos угла , лежащего напротив стороны 3 см по т. косинусов.
9= 625+676-2*25*26*сos x
9=1301-50*26*cos x
1292-1300*cos x=0
cos x= 1292/1300=323/325
Найдем sinx =sqrt (1-(323/325)²)=sqrt( (325²-323²)/325²)=
=sqrt((325+323)(325-323)/325²)=2*sqrt(324)/325=4*9/325=36/325
=>по т синусов имеем 3/sinx=2R
3*325/36=2R
325/12=2R
R=325/24
R=13.5 cm