ответ расписывать не нужно, только ответ.
1)
Длина вектора A равна 1, а длина вектора M равна 9.
Сколько различных цельных значений может принимать длина вектора (A+M)
2)
Длина вектора A равна 4, а длина вектора (A+M) равна 11.
Сколько цельных значений может принимать длина вектора M.
3)
Площадь параллелограмма ABCD равна 36. Найдите площадь четырёхугольника ABCK ,если вектор DK= вектору BC.
4)
Длины сторон АВ и ВС параллелограмма АВСD равны соответственно 8 и 12, а его диагонали пересекаются в точке О. Найдите длину вектора ( ОA+OD).
Основание равнобедренного треугольника перпендикулярно его высоте (она же и биссектриса угла при вершине).
Находим уравнения биссектрис угла при вершине О:
1) (3х+у)/√10 = (-х+3у)/√10
3х+у = -х+3у
4х = 2у
у = 2х не подходит (проходит выше сторон треугольника).
2) (3х+у)/√10 = -(-х+3у)/√10
3х+у = -(-х+3у)
2х = -4у
у = (-1/2)х.
Уравнение перпендикулярной прямой у = 1/(-к)+в
В нашем случае уравнение основания (назовём его АВ) будет таким:
у = 1(1/2)х+в = 2х+в.
Подставим координаты известной точки на основании (5;0):
0 = 2*5+в отсюда в = -10.
Уравнение АВ: у = 2х-10 или 2х-у-10 = 0.
Координаты вершин А и В находим как как точки пересечения боковых сторон с основанием.
Сложив уравнения, получаем 5х-10 = 0, отсюда х = 10/5 = 2.
у = -3х = -3*2 = -6. Это точка А(2; -6).
Умножим первое уравнение на 2 и сложим:
5у = 10, у = 10/5 = 2, х = 3у = 3*2 = 6.
Это точка В(6; 2).
ответ: вершины треугольника О(0;0), А(2;-6), В(6;2).
В прямоугольном треугольнике АSO АО/АS=Cos(<SAO).
Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6.
Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9.
ответ: высота основания пирамиды равна 9.