cos∠B = 0
cos∠A = 0,6
cos∠C = 0,8
Объяснение:
Найдем длины сторон треугольника по формуле расстояния между точками:
Проверим по теореме, обратной теореме Пифагора, не является ли этот треугольник прямоугольным:
AC² = AB² + BC²
(5√2)² = (3√2)² + (4√2)²
50 = 18 + 32
50 = 50 - равенство верно, значит треугольник прямоугольный с гипотенузой АС.
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
Косинус прямого угла равен нулю.
cos∠A = AB / AC = 3√2 / 5√2 = 3/5 = 0,6
cos∠C = BC / AC = 4√2 / 5√2 = 4/5 = 0,8
1. Пусть а и b - стороны прямоугольника.
2. Составим систему уравнений, в которой первое уравнение будет выражать периметр прямоугольника, а второе - площадь.
{ 2 • (a + b) = 22,
{a • b = 28.
3. В первом уравнении разделим обе части на 2.
{ a + b = 11,
4. Выразим одну из строн в первогом уравнении, подставим во второе и решим его.
a = 11 - b,
(11 - b) • b = 28,
11b - b^2 = 28,
b^2 - 11b + 28 = 0,
b1 = 4, b2 = 7.
Выразим а через полученные значения b.
a1 = 11 - 4 = 7,
a2 = 11 - 7 = 4.
ответ: ширина прямоугольника равна 4, а длина - 7.
cos∠B = 0
cos∠A = 0,6
cos∠C = 0,8
Объяснение:
Найдем длины сторон треугольника по формуле расстояния между точками:
Проверим по теореме, обратной теореме Пифагора, не является ли этот треугольник прямоугольным:
AC² = AB² + BC²
(5√2)² = (3√2)² + (4√2)²
50 = 18 + 32
50 = 50 - равенство верно, значит треугольник прямоугольный с гипотенузой АС.
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
Косинус прямого угла равен нулю.
cos∠B = 0
cos∠A = AB / AC = 3√2 / 5√2 = 3/5 = 0,6
cos∠C = BC / AC = 4√2 / 5√2 = 4/5 = 0,8
1. Пусть а и b - стороны прямоугольника.
2. Составим систему уравнений, в которой первое уравнение будет выражать периметр прямоугольника, а второе - площадь.
{ 2 • (a + b) = 22,
{a • b = 28.
3. В первом уравнении разделим обе части на 2.
{ a + b = 11,
{a • b = 28.
4. Выразим одну из строн в первогом уравнении, подставим во второе и решим его.
a = 11 - b,
(11 - b) • b = 28,
11b - b^2 = 28,
b^2 - 11b + 28 = 0,
b1 = 4, b2 = 7.
Выразим а через полученные значения b.
a1 = 11 - 4 = 7,
a2 = 11 - 7 = 4.
ответ: ширина прямоугольника равна 4, а длина - 7.