Центр описанной около треугольника окружности лежит в точке пересечения срединных перпендикуляров. Для равностороннего треугольника это точка пересечения высот, медиан, биссектрис, т.к. они у него совпадают. Медианы треугольника пересекаются в отношении 2:1, считая от вершины. Следовательно, радиус описанной около равностороннего треугольника окружности равен 2/3 его высоты. R=12:3•2=8 дм.
Если дана сторона правильного треугольника, то существует формула радиуса описанной около него окружности. R=a/√3
Две прямые касаются окружности (радиусом 9 см) с центром О в точках Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.
Объяснение:
Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.
Найти ∠РМК.
Решение.
ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.
Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.
Для равностороннего треугольника это точка пересечения высот, медиан, биссектрис, т.к. они у него совпадают.
Медианы треугольника пересекаются в отношении 2:1, считая от вершины. Следовательно, радиус описанной около равностороннего треугольника окружности равен 2/3 его высоты.
R=12:3•2=8 дм.
Если дана сторона правильного треугольника, то существует формула радиуса описанной около него окружности. R=a/√3
Две прямые касаются окружности (радиусом 9 см) с центром О в точках Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.
Объяснение:
Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.
Найти ∠РМК.
Решение.
ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.
Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.
Тогда ∠РМК=∠РМО + ∠КМО= 30°+30°=60°
ответ.∠РМК=60°