Параллелограмм АВСД: АВ=СД=8, ВС=АД=10, ВД=7,2. АМ - биссектриса угла угла А СК - биссектриса угла угла С Точки М и К - точки пересчения биссектрис с диагональю ВД. ВД=ВМ+МД=ВМ+МК+КД=ВК+КД По свойству биссектрисы: АВ/ВМ=АД/МД 8/ВМ=10/(ВД-ВМ) 8(7,2-ВМ)=10ВМ 18ВМ=57,6 ВМ=3,2 Т.к. в параллелограмме противоположные углы равны (<A=<C), то значит и <ABM=<ДСК. <ABД=<СДВ как накрест лежащие углы при пересечении параллельных прямых АВ и СД секущей ВД Получается, что ΔАВМ=ΔДСМ по стороне и прилежащей к ней углам. Значит ВМ=КД=3,2 Расстояние МК=ВД-ВМ-КД=7,2-2*3,2=0,8 ответ: 0,8
Пусть Н - середина ВС, тогда АН - медиана и высота в правильном треугольнике АВС. То есть АН⊥ВС. СС₁⊥(АВС), значит АН⊥СС₁. АН перпендикулярен двум пересекающимся прямым плоскости (ВСС₁), значит АН⊥(ВСС₁).
Проведем КТ║АН. Тогда КТ⊥(ВСС₁).
Плоскость (С₁КТ) проходит через прямую КТ, перпендикулярную (ВСС₁), значит (С₁КТ)⊥(ВСС₁). С₁КТ - искомое сечение.
С₁Т - проекция С₁К на плоскость (ВСС₁), значит ∠КС₁Т - угол между прямой С₁К и плоскостью (ВСС₁). ∠КС₁Т - искомый. Обозначим его α.
ΔАВС: АН = АВ√3/2 = 4√3/2 = 2√3 как высота равностороннего треугольника. КТ = АН/2 = √3 как средняя линия ΔАСН.
АМ - биссектриса угла угла А
СК - биссектриса угла угла С
Точки М и К - точки пересчения биссектрис с диагональю ВД.
ВД=ВМ+МД=ВМ+МК+КД=ВК+КД
По свойству биссектрисы:
АВ/ВМ=АД/МД
8/ВМ=10/(ВД-ВМ)
8(7,2-ВМ)=10ВМ
18ВМ=57,6
ВМ=3,2
Т.к. в параллелограмме противоположные углы равны (<A=<C), то значит и <ABM=<ДСК.
<ABД=<СДВ как накрест лежащие углы при пересечении параллельных прямых АВ и СД секущей ВД
Получается, что ΔАВМ=ΔДСМ по стороне и прилежащей к ней углам.
Значит ВМ=КД=3,2
Расстояние МК=ВД-ВМ-КД=7,2-2*3,2=0,8
ответ: 0,8
АН⊥ВС.
СС₁⊥(АВС), значит АН⊥СС₁.
АН перпендикулярен двум пересекающимся прямым плоскости (ВСС₁), значит АН⊥(ВСС₁).
Проведем КТ║АН.
Тогда КТ⊥(ВСС₁).
Плоскость (С₁КТ) проходит через прямую КТ, перпендикулярную (ВСС₁), значит (С₁КТ)⊥(ВСС₁).
С₁КТ - искомое сечение.
С₁Т - проекция С₁К на плоскость (ВСС₁), значит ∠КС₁Т - угол между прямой С₁К и плоскостью (ВСС₁).
∠КС₁Т - искомый. Обозначим его α.
ΔАВС: АН = АВ√3/2 = 4√3/2 = 2√3 как высота равностороннего треугольника.
КТ = АН/2 = √3 как средняя линия ΔАСН.
ΔСС₁К: по теореме Пифагора
С₁К = √(СС₁² + КС²) = √(6 + 4) = √10
ΔС₁КТ: КТ - перпендикуляр к плоскости (ВСС₁), прямая С₁Т лежит в этой плоскости, значит КТ⊥С₁Т. Треугольник прямоугольный.
sinα = KT/C₁K = √3/√10
cosα = √(1 - sin²α) = √(1 - 3/10) = √(7/10) = √70/10