Паралельною проекцією точок А, В і С, причому точка С лежить між точками А і С, на площину альфа є точки А1, В1 і С1. Знайдіть довжину відрізків А1В1 і А1С1, якщо АВ=20см, ВС=8см, В1С1=2см
Построение. Тетраэдр - простейший многогранник,гранями которого являются четыре треугольника. Плоскость сечения параллельна плоскости ADC, следовательно, линия ad пересечения секущей плоскости и грани АВD будет параллелна ребру АD. Точно так же линии пересечения секущей плоскости и граней ADC и CBD - ac и bc соответственно будут параллельны ребрам АС и ВС. АВD - прямоугольный треугольник и по Пифагору AD=√(AB²+BD²) или AD=√(64+36)=10. ВDС - прямоугольный треугольник и по Пифагору DС=√(DB²+BC²) или AD=√(36+64)=10. ac - средняя линия треугольника АВС, она параллельна АС и равна ее половине. ас=6. Точно также ad=5 и dc=5. Площадь сечения - (треугольника adc) найдем по Герону: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны треугольника. В нашем случае S=√(8*2*3*3)=12см².
Через точку, не лежащую на данной прямой, можно провести единственную прямую, параллельную данной.
Теорема 1:
На плоскости две прямые, параллельные третьей, параллельны между собой.
Дано: a║c, b║c.
Доказать: a║b.
Доказательство (от противного): предположим, что прямые а и b не параллельны и пересекаются в некоторой точке М. Тогда через точку М проходят две прямые, параллельные прямой с. Но это противоречит аксиоме параллельных прямых. Предположение неверно, а║b.
Теорема 2:
На плоскости если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
Дано: a║b, c ∩ a.
Доказать: с ∩ b.
Доказательство: Пусть М - точка пересечения прямых а и с. Предположим, что прямая с не пересекает прямую b, значит b║с. Тогда через точку М проходит две прямые, параллельные прямой а. Но это противоречит аксиоме параллельных прямых. Предположение неверно, с ∩ b.
АВD - прямоугольный треугольник и по Пифагору AD=√(AB²+BD²) или AD=√(64+36)=10.
ВDС - прямоугольный треугольник и по Пифагору DС=√(DB²+BC²) или AD=√(36+64)=10.
ac - средняя линия треугольника АВС, она параллельна АС и равна ее половине.
ас=6. Точно также ad=5 и dc=5.
Площадь сечения - (треугольника adc) найдем по Герону:
S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны треугольника.
В нашем случае S=√(8*2*3*3)=12см².
Аксиома параллельных прямых:
Через точку, не лежащую на данной прямой, можно провести единственную прямую, параллельную данной.
Теорема 1:
На плоскости две прямые, параллельные третьей, параллельны между собой.
Дано: a║c, b║c.
Доказать: a║b.
Доказательство (от противного): предположим, что прямые а и b не параллельны и пересекаются в некоторой точке М. Тогда через точку М проходят две прямые, параллельные прямой с. Но это противоречит аксиоме параллельных прямых. Предположение неверно, а║b.
Теорема 2:
На плоскости если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
Дано: a║b, c ∩ a.
Доказать: с ∩ b.
Доказательство: Пусть М - точка пересечения прямых а и с. Предположим, что прямая с не пересекает прямую b, значит b║с. Тогда через точку М проходит две прямые, параллельные прямой а. Но это противоречит аксиоме параллельных прямых. Предположение неверно, с ∩ b.