Пусть о – центр окружности, аbсdef – данный шестиугольник сторона шестиугольника ab=а=6см. для шестиугольника радиус описанной окружности равен стороне шестиугольника r=a r=6 см центральный угол правильного шестиугольника равен 360\6=60 градусов площадь кругового сектора вычисляется по формуле sкс=pi*r^2*альфа\360 градусов где r – радиус круга, а альфа - градусная мера соответствующего угла. sкс=pi*6^2*60 градусов\360 градусов= 6*pi см^2 площадь треугольника аоb равна аb^2*корень (3)\4= =6^2 *корень (3)\4=9*корень (3) см^2 . площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой= площадь кругового сектора- площадь треугольника аос площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой (площадь меньшей части круга, на которые его делит сторона шестиугольника) = =6*pi- 9*корень (3) см^2 . ответ: 6*pi см^2, 6*pi- 9*корень (3) см^2
Відповідь:
Нехай ∆АВС - даний рівнобедрений трикутник (АВ = ВС).
AD - висота, АК - бісектриса, ∟KAD = 15°.
Знайдемо кути ∆АВС.
Розглянемо ∆AKD.
∟ADK = 90°, ∟AKD = 90° - ∟KAD,
∟AKD = 90° - 15° = 75°. ∟BKA + ∟AKD = 180° (як суміжні).
∟BKA = 180° - 75° = 105°.
Нехай ∟BAK = ∟KAC = х (АК - бісектриса). ∟BAC = 2х.
3 ∆ВАК: ∟B = 180° - (∟BAK + ∟BKA),
∟B = 180° - (х + 105°) = 180° - х - 105° = 75° - х.
Розглянемо ∆АВС.
∟A = ∟C = 2х (∆АВС - рівнобедрений).
∟A + ∟C + ∟B = 180°, 2х + 2х + 75 - х = 180; 3х = 105; х = 35.
∟A = ∟C = 2 • 35° = 70°, ∟B = 75° - 35° = 40°.
Дана задача має один розв'язок, так як висота i бісектриса, проведені
з вершини рівнобедреного трикутника до основи співпадаютъ, а за умо-
вою кут між ними 15°.
Пояснення: