1)Розглянемо ∆АВС: Проведемо висоту АК, за властивістю висота в рібнобедренному трикутнику, АК - висота, бісектриса , медіана Отже КС = 12/2=6см Розглянемо ∆АКС : За теоремою Піфагора АК=8см Так як АМ - перпендикуляр до площини основи, то трикутник МАК - прямокутний за трьома Перпендикулярами (Перпендикуляр, похила і її проекція) За умовою задачі кут МКА=45° , а отже він так само рівнобедренний (якщо МКА 45°, то КАМ так само 45°) Отже АМ=АК=8см. 2)Розглянемо ∆САМ: СА = 10см за умовою задачі, АМ = 8см , tg кута МСА = АМ/АС = 8/10=4/5 3) З трикутника МАК знайдемо МК(за т. Піфагора) МК= √128 = 2√32 =8√2 Розглянемо ∆ ВМС , так як він рівнобедренний, то Його площа дорівнює -
№1
Дано: а=12 см, h=а/3
Найти: S
Решение
1) h= 12 см :3 = 4 см
2) S=(a*h):2
S= (4 см * 12 см): 2 = 24 см2
ответ: 24 см2
№2
Дано: AB=12, BC=13, ∠A=90°
Найти: АС, S
Решение.
1) По т. Пифагора:
AC^2=BC^2-AB^2;
AC^2= 169-144;
AC^2=25;
AC=5 см.
2) S=(AC*AB):2
S=(5 см * 12 см) : 2 = 30 см2.
ответ: 1) 5 см; 2) 30 см2.
№3.
Дано: a=10 см, b=12 см
Найти: S, P
Решение.
1) S=(ab):2
S= (10см * 12 см) : 2 = 60 см2.
2) В треугольнике ABC: ∠A=90°, AB=a:2=10:2=5 см, AC=b:2=12:2=6 см
По теореме Пифагора:
BC^2=AB^2+AC^2;
BC^2=25+36;
BC^2=61;
BC=√61см.
P=4*BC
P=4√61см.
ответ: 1) 60 см2; 2)4√61см.
А №4 я не поняла, извините
Проведемо висоту АК, за властивістю висота в рібнобедренному трикутнику, АК - висота, бісектриса , медіана
Отже КС = 12/2=6см
Розглянемо ∆АКС :
За теоремою Піфагора
АК=8см
Так як АМ - перпендикуляр до площини основи, то трикутник МАК - прямокутний
за трьома Перпендикулярами (Перпендикуляр, похила і її проекція)
За умовою задачі кут МКА=45° , а отже він так само рівнобедренний (якщо МКА 45°, то КАМ так само 45°)
Отже АМ=АК=8см.
2)Розглянемо ∆САМ:
СА = 10см за умовою задачі, АМ = 8см ,
tg кута МСА = АМ/АС = 8/10=4/5
3) З трикутника МАК знайдемо МК(за т. Піфагора)
МК= √128 = 2√32 =8√2
Розглянемо ∆ ВМС , так як він рівнобедренний, то Його площа дорівнює -
Тобто, S = 0.5 * 12 * 8√2 = 48√2 cm²