тогда углы при основании <Вп=(180-120) /2 = 30
углы при основании являются вписанными <Вп - опираются на хорды ( боковая сторона)
на эту же хорду/сторону опирается центральный угол <Цн
центральный угол в 2 раза больше вписанного <Цн =2* <Вп = 2*30=60 град
из центра описанной окружности боковые стороны видны под углом 60 град
основание видно под углом 2*<Цн =2*60=120 град
2.Треугольник АВС,
уголА=36,
уголС=48,
уголВ=180-36-48=96,
центр вписанной окружности О лежит на пересечении биссекрис, треугольник АОС,
уголАОС=180-1/2уголА-1/2уголС=180-18-24=138 - видна сторона АС, треугольник АОВ,
уголАОВ=180-1/2уголА-1/2уголВ=180-18-48=114-видна сторона АВ,
треугольник ВОС, уголВОС=180-1/2уголС-1/2уголВ=180-24-48=108 - видна стгорона ВС
3.четырехугольник АВСД вписан в окружность, уголА/уголВ/уголС=3/4/6=3х/4х/6х,
около четырехугольника можно описать окружность при условии что сумма противоположных углов=180,
уголА+уголС=180=уголВ+уголД, 3х+6х=4х+уголД, уголД=9х-4х=5х, 3х+6х=180, х=20, уголА=3*20=60, уголВ=4*20=80, уголС=6*20=120, уголД=5*20=100
4.AB+DC=AD+BC P=48 48:2=24 AB+DC=24 AD+BC=24 x+4 - AB x - CD x+x+4=24 x=10 14=AB 10=CD 1y - BC 2y - AD 1y+2y=24 y=8 8=BC 16=AD
площадьАВСД=АД в квадрате=2*2=4,
треугольник МДС прямоугольный, МС=корень(МД в квадрате+СД в квадрате)=корень(4+4)=2*корень2, площадь треугольника МДС=1/2*МД*ДС=1/2*2*2=2,
треугольник МАД прямоугольный, МА=корень(МД в квадрате+АД в квадрате)=корень(4+4)=2*корень2, площадь треугольника МАД=1/2МД*АД=1/2*2*2=2
треугольник МАВ прямоугольный, МА перпендикулярно АВ(согласно теореме о трех перпендикулярах), площадь МАВ=1/2*МА*АВ=1/2*2*корень2*2=2*корень2
треугольник МВС прямоугольный, МС перпендикулярно ВС(по теореме о трех перпендикулярах), площадь МВС=1/2МС*ВС=1/2*2*корень2*2=2*корень2
боковая поверхность=2+2+2*корень2+2*корень2=4+4*корень2=4*(1+корень2)
полная повехность=4+4+4*корень2=8+4*корень2=4*(2+корень2)
тогда углы при основании <Вп=(180-120) /2 = 30
углы при основании являются вписанными <Вп - опираются на хорды ( боковая сторона)
на эту же хорду/сторону опирается центральный угол <Цн
центральный угол в 2 раза больше вписанного <Цн =2* <Вп = 2*30=60 град
из центра описанной окружности боковые стороны видны под углом 60 град
основание видно под углом 2*<Цн =2*60=120 град
2.Треугольник АВС,
уголА=36,
уголС=48,
уголВ=180-36-48=96,
центр вписанной окружности О лежит на пересечении биссекрис, треугольник АОС,
уголАОС=180-1/2уголА-1/2уголС=180-18-24=138 - видна сторона АС, треугольник АОВ,
уголАОВ=180-1/2уголА-1/2уголВ=180-18-48=114-видна сторона АВ,
треугольник ВОС, уголВОС=180-1/2уголС-1/2уголВ=180-24-48=108 - видна стгорона ВС
3.четырехугольник АВСД вписан в окружность, уголА/уголВ/уголС=3/4/6=3х/4х/6х,
около четырехугольника можно описать окружность при условии что сумма противоположных углов=180,
уголА+уголС=180=уголВ+уголД, 3х+6х=4х+уголД, уголД=9х-4х=5х, 3х+6х=180, х=20, уголА=3*20=60, уголВ=4*20=80, уголС=6*20=120, уголД=5*20=100
4.AB+DC=AD+BC P=48 48:2=24 AB+DC=24 AD+BC=24 x+4 - AB x - CD x+x+4=24 x=10 14=AB 10=CD 1y - BC 2y - AD 1y+2y=24 y=8 8=BC 16=AD