Параллельно оси цилиндра проведена плоскость, отсекающая от окружности основания дугу 60°. Радиус цилиндра равен 6 см. Найдите площадь полученного сечения, если высота цилиндра равна 5 см. Найти площадь боковой поверхности и объём цилиндра.
Теорема Фалеса. Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки. ⇒
ВК=КР=РА.
Средняя линия трапеции АВСD - отрезок МN=(ВС+AD):2=(2+5):2=3,5 (м)
точку пересечения отрезков обозначим за О.
1)Рассмотрим треугольники ВОС и AOD, они равны, т.к. ВО=OD, ОА=ОС, а угол ВОС=углу AOD, как вертикальные при пересекающихся прямых.
Из этого следует, что ВС=AD, как соответственные элементы равных треугольников.
2)Рассмотрим треугольники ВОА и COD, они равны, т.к. ВО=OD, АО=ОС, а угол ВОА=углуCOD, как вертикальные при пересекающихся прямых.
Из этого следует, что АВ=CD
3)Рассмотрим треугольники АВС и ADC, они равныпо трем сторонам ( АС-общая, AB=CD, AD=BC из доказательств)
Обозначим трапецию АВСD.
Точки Н и Т делят сторону СD на отрезки
СН=НТ=ТD.
Теорема Фалеса. Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки. ⇒
ВК=КР=РА.
Средняя линия трапеции АВСD - отрезок МN=(ВС+AD):2=(2+5):2=3,5 (м)
СH=HT=TD ⇒
HN=NT, поэтому
MN- средняя линия трапеции РКНТ.
Примем КН=х, РТ=у
Тогда х+у=2•3,5=7, откуда
у=7-х.
КН- средняя линия трапеции РВСТ
КН=(2+(7-х)):2=х
9-х=2х ⇒
х=3 (м) - длина отрезка КН
у=7-3=4 (м) - длина отрезка РТ