Средняя линия равнобедренной трапеции ABCD (BC||AD) равна 12 см. Диагональ AC образует с основанием угол 60. Найдите диагональ трапеции
Объяснение:
Т.к. средняя линия равна полусумме оснований трапеции , то сумма оснований будет равна двум длинам средней линии, те ВС+АD=2*12=24(cм)
Проведем ВТ||АС. Тогда АСВТ- параллелограмм , по определению параллелограмма⇒ ВС=АТ и АТ+АD=24
Тк ∠САD=60° и ВТ||АС , то ∠Т=60° как соответственный при секущей ТD.
В равнобедренной трапеции диагонали равны ⇒ВD=AC=BT ⇒ΔBTD- равнобедренный и тогда третий угол равен ∠ТВD=180°-60°-60°=60° ⇒ΔBTD- равносторонний и ВD=BT=AD=24см.
См. рисунок. решать задачу можно разными например, вот этими двумя. 1) сделаем достроение BD параллельно МС. Отсюда углы МСВ, СВD и СDB равны, значит, СВ=СD по т. Фалеса если АМ/МВ=3/5 тогда АС/СD=3/5 т.е имеем систему a/b=3/5 и a+b=72 отсюда a=27 b=45 2)рассмотрим треугольники АСМ и МСВ АМ/sin(ACM)=AC/sin(AMC) MB/sin(MCB)=CB/sin(BMC) т.к углы АСМ и МСВ равны, а угол АМС=180-ВМС, тогда sin(ACM)=sin(MCB) и sin(AMC)=sin(BMC) отсюда АС/СВ=АМ/МВ=3/5 АС+СВ=72 пришли опять к той же системе. задача решена
Средняя линия равнобедренной трапеции ABCD (BC||AD) равна 12 см. Диагональ AC образует с основанием угол 60. Найдите диагональ трапеции
Объяснение:
Т.к. средняя линия равна полусумме оснований трапеции , то сумма оснований будет равна двум длинам средней линии, те ВС+АD=2*12=24(cм)
Проведем ВТ||АС. Тогда АСВТ- параллелограмм , по определению параллелограмма⇒ ВС=АТ и АТ+АD=24
Тк ∠САD=60° и ВТ||АС , то ∠Т=60° как соответственный при секущей ТD.
В равнобедренной трапеции диагонали равны ⇒ВD=AC=BT ⇒ΔBTD- равнобедренный и тогда третий угол равен ∠ТВD=180°-60°-60°=60° ⇒ΔBTD- равносторонний и ВD=BT=AD=24см.
решать задачу можно разными например, вот этими двумя.
1) сделаем достроение BD параллельно МС. Отсюда углы МСВ, СВD и СDB равны, значит, СВ=СD по т. Фалеса если АМ/МВ=3/5 тогда АС/СD=3/5 т.е имеем систему a/b=3/5 и a+b=72 отсюда a=27 b=45
2)рассмотрим треугольники АСМ и МСВ
АМ/sin(ACM)=AC/sin(AMC) MB/sin(MCB)=CB/sin(BMC)
т.к углы АСМ и МСВ равны, а угол АМС=180-ВМС, тогда sin(ACM)=sin(MCB) и sin(AMC)=sin(BMC) отсюда АС/СВ=АМ/МВ=3/5 АС+СВ=72 пришли опять к той же системе.
задача решена