КАВС-пирамида, в основании равносторонний треугольник АВС, АВ=ВС=АС, О-цент основания - пересечение медиан=высот=биссектрис, КО-высота пирамиды=корень6, АК=ВК=СК=3*корень2, проводим высоту ВО=медиане на АС, треугольник КВО прямоугольный, ВО=корень(КВ в квадрате-КО в квадрате)=корень(18-6)=2*корень3, ВО=2/3ВН, ВН=3ВО/2=3*2*корень3/2=3*корень3
АВ=2*ВН*корень3/3=2*3*корень3*корень3/3=6, треугольник АКС проводим апофему КН, КН-высота=медиане, АН=НС=1/2АС=6/2=3, треугольник АКН прямоугольный, КН=корень(АК в квадрате-АН в квадрате)=корень(18-9)=3,
Пусть в ΔABC, AK — высота, AN — биссектриса ∠A, AE — медиана.
Из точки A к прямой BC проведены перпендикуляр AK (высота) и две наклонные. Cледовательно точка N принадлежит либо KB, либо KE.
Точка N совпадает с K, тогда AN = AK < AE.
Точка N совпадает с E, тогда AN = AE > AK.
Точка N лежит между точками K и E, тогда AK < AN < AE (так как ее проекция NK меньше EK — проекции AE).
По доказанному в задаче № 24, AN не может быть больше AE, т.е. точка N не может лежать между E и С Что и требовалось доказат
АВ=2*ВН*корень3/3=2*3*корень3*корень3/3=6, треугольник АКС проводим апофему КН, КН-высота=медиане, АН=НС=1/2АС=6/2=3, треугольник АКН прямоугольный, КН=корень(АК в квадрате-АН в квадрате)=корень(18-9)=3,
площадь боковая=1/2*периметрАВС*КН=1/2*3*6*3=27