Параллелограмм ABCD и прямоугольник имеют BKNC общую сторону ВС и не лежат в одной плоскости (см.рисунок). Определите, как расположены:
a) Прямые KN и AD. б) Прямая AD и плоскость KNC. Вычислите:
b) угол между прямыми ВС и АВ, если
2A = 72°
г) угол между прямыми KN и DC, если
угл А=59°
Биссектриса АК угла А при основании делит угол А на 2 равных <ВАК=<САК.
Медиана ВМ, проведенная к основанию, делит основание на АМ=МС; также она является и высотой и биссектрисой (<АВМ=<СВМ=50/2=25°).
Медиана ВМ и биссектриса АК пересекаются в точке О
Нужно найти угол АОВ.
В равнобедренном треугольнике углы при основании равны, значит <А=<С=(180-<В)/2=(180-50)/2=65°. Тогда <ВАК=65/2=32,5°
Из ΔАВО найдем <АОВ=180-<АВО-<ВАО=180-25-32,5=122,5°=122°30'
Биссектриса АК угла А при основании делит угол А на 2 равных <ВАК=<САК.
Медиана ВМ, проведенная к основанию, делит основание на АМ=МС; также она является и высотой и биссектрисой (<АВМ=<СВМ=50/2=25°).
Медиана ВМ и биссектриса АК пересекаются в точке О
Нужно найти угол АОВ.
В равнобедренном треугольнике углы при основании равны, значит <А=<С=(180-<В)/2=(180-50)/2=65°. Тогда <ВАК=65/2=32,5°
Из ΔАВО найдем <АОВ=180-<АВО-<ВАО=180-25-32,5=122,5°=122°30'