В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
aaaaaa29
aaaaaa29
03.03.2020 22:51 •  Геометрия

Перекладина довжиною 5 м своїми кінцями тримається на двох вертикальних стовпах висотою 3 м та 6 м. якою буде відстань між основами стовпів?

Показать ответ
Ответ:
6473089
6473089
17.02.2021 11:11

 Основания равнобокой трапеции равны 8 см и 18 см. Точка удалена от каждой стороны трапеции на 10 см. Найдите расстояние от этой точки до плоскости трапеции.

———————

ответ: 8 см.

Объяснение:

Назовем данную точку Е.

 Точка удалена от каждой стороны трапеции на равное расстояние, т.е. на  длину перпендикуляров, проведенных от этой точки к сторонам трапеции (см.  рисунок во вложении.)

                    ЕК=ЕF=EM=EP.

  Искомое расстояние  - перпендикуляр ЕО к плоскости трапеции. Прямоугольные треугольники ЕOF=EOM=EОP=EOK,  проекции  их гипотенуз - по т. о 3-х перпендикулярах - перпендикулярны сторонам трапеции и равны  радиусу вписанной в трапецию окружности.

  Суммы противоположных сторон четырехугольника, в который вписана окружность, равны. ⇒ АВ+СD=BC+AD=8+18=26. Боковые стороны равны между собой (дано), ⇒ их длина 26:2=13  см.

 Из вершины В трапеции опустим перпендикуляр ВН на АD. Он является высотой трапеции и равен диаметру вписанной окружности.

АН - полуразность оснований. АН=(АD-ВС):2=5.

Из ∆ АВН по т.Пифагора ВН=√(AB²-AH²)=√(13²-5²)=12 см ⇒ d= МК=12, ОК=r=12:2=6 см.

Из ∆ ЕОК по т.Пифагора ЕО=√(EK²-КО²)=√(10²-6²)=8 (см).


Основи рівнобічної трапеції дорівнюють 8 см і 18 см точка віддалена від кожної сторони трапеції на 1
0,0(0 оценок)
Ответ:
Ram543
Ram543
18.04.2023 15:01

1). Предположим, что такой треугольник и в правду существует. Пусть есть некий треугольник ABC, в котором проведены биссектрисы AK и CL. Для удобства обозначим ∠KAC=∠KAB=∠1, а ∠LCA=∠LCB=∠2 (эти углы равны, т.к. AK и CL - биссектрисы). Биссектрисы AK и CL перпендикулярны и пересекаются в точке О, т.е. ∠AOL=90°, тогда ∠AOC=180°-∠AOL=90°, как смежный. ∠LOK=∠AOC=90°, как вертикальные. ∠COK=∠AOL=90°, как вертикальные. Получаем, что ∠AOL=∠AOC=∠LOK=∠COK=90°;

2). Рассмотрим прямоугольный треугольник AOC, т.к. ∠AOC=90°. В треугольнике AOC ∠1+∠2=90°, как сумма острых углов в прямоугольном треугольнике (∠1=∠KAC, ∠2=∠LCA из предыдудшего пункта);

3). Рассмотрим прямоугольный треугольник AOL, т.к. ∠AOL=90°. ∠1+∠ALO=90°, как сумма острых углов прямоугольного треугольника AOL. Тогда ∠ALO=90°-∠1;

4). Рассмотрим прямоугольный треугольник COK, т.к. ∠COK=90°. ∠2+∠CKO=90°, как сумма острых углов прямоугольного треугольника COK. Тогда ∠CKO=90°-∠2;

5). Рассмотрим четырехугольник LBKO:

∠BLO=180°-∠ALO, как смежный угол. Подставив значение ∠ALO из п. 3, получаем:

∠BLO=180°-90°+∠1=90°+∠1;

Аналогично ∠BKO=180°-∠CKO, как смежный угол. Подставив значение ∠CKO из п. 4, получаем:

∠BKO=180°-90°+∠2=90°+∠2;

∠LOK=90° из п. 1;

Т.к. сумма всех углов четырехугольника равна 360°, то:

∠BLO+∠BKO+∠LOK+∠LBK=360°;

Подставив найденные значения, получаем:

90°+∠1+90°+∠2+90°+∠LBK=360°;

270°+∠1+∠2+∠LBK=360°;

∠1+∠2=90°-∠LBK;

6). Но в п. 2 мы выяснили, что ∠1+∠2=90°, получается некоторое противоречие:

∠1+∠2=90°

∠1+∠2=90°-∠LBK

Такого быть не может, а значит треугольника, в котором две биссектрисы взаимно перпендикулярны, не существует.

ответ: Нет, не существует.



Существует треугольник, две биссектрисы которого взаимно перпендикулярны?
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота