Перерисуйте фигуру заданными в координатной плоскости себе в тетрадь В этой координатной плоскости поверните квадрат на 90 градусов, треугольник на 180 градусов пятиугольник на 120 градусов и подписаваюсь
Насколько я поняла Углы при основании равны 62 градусам, а т.к. у равнобедренного треуг. углы при основании равные, то 2 угла при основании равны 62 градусам..Найдем величину 3 угла, 180-(62+62)= 56..Отметим углы буквами: A, B,C..Угол А=62градуса, В=56градусов, С=62 градуса..Попробуйте построить треугольник равноб, где при основании будут равные 62 градусам углы, на рисунке видно, что стороны АВ и ВС гораздо больше стороны АС..Следовательно из этого, наибольшие стороны треугольника- это АВ и ВС, 2 стороны , т.к. треугольник равнобедренный
Насколько я поняла Углы при основании равны 62 градусам, а т.к. у равнобедренного треуг. углы при основании равные, то 2 угла при основании равны 62 градусам..Найдем величину 3 угла, 180-(62+62)= 56..Отметим углы буквами: A, B,C..Угол А=62градуса, В=56градусов, С=62 градуса..Попробуйте построить треугольник равноб, где при основании будут равные 62 градусам углы, на рисунке видно, что стороны АВ и ВС гораздо больше стороны АС..Следовательно из этого, наибольшие стороны треугольника- это АВ и ВС, 2 стороны , т.к. треугольник равнобедренный
d(М, АВ) = d(M, BC) = 4 дм
d(M, AD) = d(M, СD) = 2√5 дм
d(M, BD) = 4 дм
d(M, AC) = 3√2 дм
Объяснение:
Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к этой прямой.
МВ - перпендикуляр к плоскости квадрата, а значит, и к любой прямой, лежащей в этой плоскости.
МВ⊥АВ, значит расстояние от точки М до прямой АВ
d(М, АВ) = МВ = 4 дм
МВ⊥ВС, значит
d(M, BC) = MB = 4 дм
МВ⊥BD, значит
d(M, BD) = MB = 4 дм
BA⊥AD как стороны квадрата,
ВА - проекция МА на плоскость, значит МА⊥AD по теореме о трех перпендикулярах, тогда
d(M, AD) = MA
Аналогично, ВС⊥CD как стороны квадрата, ВС - проекция МС на плоскость, значит МС⊥CD по теореме о трех перпендикулярах, тогда
d(M, СD) = MС
Если равны проекции наклонных, проведенных из одной точки, то равны и сами наклонные:
ВС = ВА (стороны квадрата), значит МС = МА.
Из прямоугольного треугольника АВМ по теореме Пифагора:
МА = √(АВ² + ВМ²) = √(4 + 16) = √20 = 2√5 дм
Итак,
d(M, AD) = d(M, СD) = 2√5 дм
Осталось найти расстояние от М до диагонали АС.
ВО⊥АС по свойству диагоналей квадрата,
ВО - проекция МО на плоскость квадрата, значит
МО⊥АС по теореме о трех перпендикулярах.
d(M, AC) = MO
BD = AB√2 =2√2 дм как диагональ квадрата,
BО = BD/2 = √2 дм (диагонали квадрата делятся точкой пересечения пополам)
Из прямоугольного треугольника МВО по теореме Пифагора:
МО = √(ВО² + ВМ²) = √(2 + 16) = √18 = 3√2 дм
d(M, AC) = 3√2 дм