Периметр равнобедренного треугольника равен 36 см, а боковая сторона делится точкой касания вписанной окружности в отношении 5:2, начиная от вершины треугольника. Найти стороны треугольника
2) В равнобедренном треугольнике боковая сторона равна 10 см, а биссектриса, проведенная к основанию 8 см. Найти радиус окружности, вписанной в этот треугольник, и радиус окружности, описанной около этого треугольника.
2)
ну если есть длины всех сторон то находим синус нужного вам угла, потом вспоминаем свойства корень(sin^2x+cos^2x)=1 и исходя из этого делаем вывод что 1-sin^2x и есть искомый косинус1)
Это тупой угол, тангенс которого равен -3. 2)Необходимо найти его стороны KL, ML и KM. Для этого можно воспользоваться теоремой Пифагора и найти каждую из сторон построив для них отдельные прямоугольные треугольники, сторонами которых будут являться одна из сторон треугольника KLM и перпендикуляры опущенные на координатные оси, третьей вершиной таких треугольников будет точка пересечения этих перпендикуляров. Так искомая сторона окажется гипотенузой в этих отдельных треугольниках, а катеты определяются по координатным осям, так как они им параллельны. Если непонятно. Воспользуйтесь этой формулой:d = корень из ( (x2-x1)^2 + (y2-y1)^2 ),
где d - искомая сторона треугольника KLM, (x1;y1) и (x2;y2) - координаты ее концов; ^2 - в квадрате.
Отсюда:
KM= корень из (7^2 + 1^2) = корень из (50) = 5 * корень из (2).
KL= корень из (3^2 + 3^2) = корень из (18) = 3 * корень из (2).
ML= корень из (4^2 + 4^2) = корень из (32) = 4 * корень из (2).
косинус L = косинус 90 градусов = 0.
косинус М = ML/KM = 4/5 = 0,8.
косинус K = KL/KM = 3/5 = 0,6.
H - ?Следуя логике это высота. Высота опущеная с вершин М и K будет совпадать со сторонами треугодьника ML и KL, а угол Н с углами М и К соответсвенно.
Высота опущенная с вершины L находится иначе. Она образует два треугольника KLH и MLH. Можно доказать через подобие треугольников, что отношение сторон или косинус угла HLM равен косинусу угла К, а косинус угла HLК равен косинусу угла М. Но можно сделать и иначе - составив уравнения для общей стороны треугольников LH:
Для треугольника KLH: LH^2 = KL^2 - KH^2
Для треугольника MLH: LH^2 = ML^2 - MH^2
Получили систему уравнений. Отняв от первого уравнения второе получим: KL^2 - ML^2 - KH^2 + -MH^2 = 0. Подставляем в полученное уравнение МН = КМ - КН и выразив КН получаем:
КН = ( KL^2 - ML^2 +КМ^2 ) / ( 2 * KM) = ( 9/5 ) * корень из двух.
Находим LН и КМ подставляя полученое значение КН в первою и второе уравнение системы соответственно:
LН = (12/5) * корень из 2; - это высота треугольника KLM опущеная с вершины L
МН = (16/5) * корень из 2.
Находим косинусы углов образованых высотой из треугольников KLH и MLH:
косинус HLM = LH/LM = 3/5 = 0,6.
косинус HLK = LH/KL = 4/5 = 0,8. вопрос 1) вектора
ОА(-1;3)...|OA|=V10
ОХ(1;0)...|OX|=1
cos a=-1/V10
cos a=-0,31622
a=108 гр 26 мин
2 верно, так как в любой треугольник можно вписать окружность и при том только одну.
4 верно, так как центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к его сторонам, а в правильном треугольнике его высоты являются серединными перпендикулярами (так как являются и медианами).
3 -неверно, так как центр окружности, описанной около прямоугольного треугольника, находится на гипотенузе этого треугольника.
4- верно, так как центром окружности, описанной около любого треугольника, является точка пересечения серединных перпендикуляров, а в правильном треугольнике высоты являются срединными перпендикулярами.
5- неверно, так как квадрат любой стороны треугольника равен сумме квадратов двух других сторон без УДВОЕННОГО произведения этих сторон на косинус угла между ними.