Углы ВАD и ВСЕ - внешние углы треугольника АВС. Из вершины В проведены перпендикуляры ВМ и ВК к биссектрисам углов ВАD и все соответственно. Найти отрезок МК, если периметр треугольника АВС равен 10 см
* * *
Продолжим ВМ и ВК до пересечения в т.Р и т.Т с прямой, содержащей сторону АС. В треугольнике РАВ отрезок АМ биссектриса угла РАВ, угол РМА=ВМА=90°. Треугольники РАМ и ВАМ равны по двум углам, прилежащим к общей стороне АМ. Следовательно, РА=АВ и РМ=МВ ( точка М - середина РВ).
Аналогично в ∆ ВСТ ВК=ТК и СТ=ВС, а точка К - середина ВТ. Отрезок МК - средняя линия ∆ РВТ.
Поэтому РА+АС+СТ=ВА+АС+ВС=периметр АВС. МК=Р(АВС):2=10:2=5 см
четырехугольник симметричен относительно высоты, проходящей через центр окружности (и трапеция тоже). Высота (трапеции) равна диаметру, то есть 6.
Площадь четырехугольника равна ПОЛУпроизведению диагоналей, то есть вторая диагональ, параллельная основаниям равна 12*2/6 = 4; половина её равна 2.
Рассмотрим треугольники, образованные 1. радиусом в точку касания боковой стороны, половиной только что вычисленной хорды и отрезком-частью вертикального диаметра, и 2. боковой стороной, высотой опущеной из вершины малого основания на большое и отрезком большого основания от вершины до этой высоты. Эти 2 прямоугольных треугольника имеют равный угол (угол между высотой и боковой стороной равен углу между радиусом и хордой в точке касания), так как стороны этих углов взаимно пепендикулярны. Значит треугольники подобны, и
а/6 = 3/2, а - боковая сторона. а = 9.
В трепеции вписана окружность, значит суммы противопложных сторон равны. Значит ПОЛУпериметр трапеции равен 2*9 =18.
ответ: 5 см
Объяснение:
Углы ВАD и ВСЕ - внешние углы треугольника АВС. Из вершины В проведены перпендикуляры ВМ и ВК к биссектрисам углов ВАD и все соответственно. Найти отрезок МК, если периметр треугольника АВС равен 10 см
* * *
Продолжим ВМ и ВК до пересечения в т.Р и т.Т с прямой, содержащей сторону АС. В треугольнике РАВ отрезок АМ биссектриса угла РАВ, угол РМА=ВМА=90°. Треугольники РАМ и ВАМ равны по двум углам, прилежащим к общей стороне АМ. Следовательно, РА=АВ и РМ=МВ ( точка М - середина РВ).
Аналогично в ∆ ВСТ ВК=ТК и СТ=ВС, а точка К - середина ВТ. Отрезок МК - средняя линия ∆ РВТ.
Поэтому РА+АС+СТ=ВА+АС+ВС=периметр АВС. МК=Р(АВС):2=10:2=5 см
четырехугольник симметричен относительно высоты, проходящей через центр окружности (и трапеция тоже). Высота (трапеции) равна диаметру, то есть 6.
Площадь четырехугольника равна ПОЛУпроизведению диагоналей, то есть вторая диагональ, параллельная основаниям равна 12*2/6 = 4; половина её равна 2.
Рассмотрим треугольники, образованные 1. радиусом в точку касания боковой стороны, половиной только что вычисленной хорды и отрезком-частью вертикального диаметра, и 2. боковой стороной, высотой опущеной из вершины малого основания на большое и отрезком большого основания от вершины до этой высоты. Эти 2 прямоугольных треугольника имеют равный угол (угол между высотой и боковой стороной равен углу между радиусом и хордой в точке касания), так как стороны этих углов взаимно пепендикулярны. Значит треугольники подобны, и
а/6 = 3/2, а - боковая сторона. а = 9.
В трепеции вписана окружность, значит суммы противопложных сторон равны. Значит ПОЛУпериметр трапеции равен 2*9 =18.
А площадь равна 18*3 = 54;