Если все грани пирамиды находятся под одинаковым углом к основанию, значит вершина S пирамиды должна быть равноудалена от всех сторон основания пирамиды=> проекция точки S, точка O также должна быть равноудалена от всех сторон пирамиды, значит она находится в точке пересечения биссектрис углов треугольника который лежит в основании.
Допустим AB=BC=32 дм, тогда из точки B опустим высоту/биссектрису/медиану BH на основание AC, так как O∈BH и BH⊥AC=> по теореме о трех перпендикуляров SH будет ⊥ AC.
Угол OHS двугранный=45° по условию.
--------
Треугольник SOH прямоугольный т.к. SO⊥плоскости(ABC)=>SO⊥OH.
так-же он равнобедренный так-как ∠OSH=180-90-45=45=∠SHO, значит высота SO=OH.
Задача свелась к простейшей планиметрической задаче по нахождению OH.
Если все грани пирамиды находятся под одинаковым углом к основанию, значит вершина S пирамиды должна быть равноудалена от всех сторон основания пирамиды=> проекция точки S, точка O также должна быть равноудалена от всех сторон пирамиды, значит она находится в точке пересечения биссектрис углов треугольника который лежит в основании.
Допустим AB=BC=32 дм, тогда из точки B опустим высоту/биссектрису/медиану BH на основание AC, так как O∈BH и BH⊥AC=> по теореме о трех перпендикуляров SH будет ⊥ AC.
Угол OHS двугранный=45° по условию.
--------
Треугольник SOH прямоугольный т.к. SO⊥плоскости(ABC)=>SO⊥OH.
так-же он равнобедренный так-как ∠OSH=180-90-45=45=∠SHO, значит высота SO=OH.
Задача свелась к простейшей планиметрической задаче по нахождению OH.
---------------------
сделаем вынос Треугольника ABC:
AO биссектриса, BH-медиана/высота.
По теореме пифагора:
Из свойств биссектрисы для треугольника ABH:
ответ:
--------------
Если что-то непонятно задай вопрос.
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
По теореме Пифагора
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60