а) ні, до площини через точку можна провести безліч прямих, але лише одна з них буде перпендикулярна. Точка А не належить площіні
б) так, перпендикуляр найменший з усіх прямих до площини
в) ні, проекції прямопропорційні довжинам похилої. Якщо розглядати трикутник з вершиною в точці А та точках перетину з площиною, то він буде прямокутний, бо опущено перпендикуляр. Похила в цьому трикутнику буде гіпотенузою. За наслідком теореми Піфагора - гіпотенуза більша за катет.
г) ні, так як АО>ВО, бо діагональ ромба , що виходить з гострого кута, більша за діагональ, що виходить з тупого куда. Точка перетину діагоналей ромба ділить діагоналі пополам. Але АО і ВО є проекціями МА і МВ відповідно, то і МА>МВ
Допустим у нас есть два равных треугольника АВС и А1В1С1, АМ и А1М1 - их соответственные медианы, проведенные к сторонам ВС и В1С1 соответственно тогда ВМ = МС, В1М1 = М1С1 (АМ и А1М1 - медианы), а раз ВС = В1С1, то все педидущие четыре отрезка равны: ВМ = МС = В1М1 = М1С1 далее уголВ = углуВ1(соответствующие углы равных треугольников) АВ = А1В1 (соответствующие стороны равных треугольников)
на основании выше изложенного делаем вывод, что тр.АВМ = тр.А1В1М1(по двум сторонам и углу между ними) а уже на основании равенства треугольников АВМ и А1В1М1 делаем вывод о равенстве наших медиан АМ и А1М1, что и требовалось доказать
Відповідь:
Пояснення:
а) ні, до площини через точку можна провести безліч прямих, але лише одна з них буде перпендикулярна. Точка А не належить площіні
б) так, перпендикуляр найменший з усіх прямих до площини
в) ні, проекції прямопропорційні довжинам похилої. Якщо розглядати трикутник з вершиною в точці А та точках перетину з площиною, то він буде прямокутний, бо опущено перпендикуляр. Похила в цьому трикутнику буде гіпотенузою. За наслідком теореми Піфагора - гіпотенуза більша за катет.
г) ні, так як АО>ВО, бо діагональ ромба , що виходить з гострого кута, більша за діагональ, що виходить з тупого куда. Точка перетину діагоналей ромба ділить діагоналі пополам. Але АО і ВО є проекціями МА і МВ відповідно, то і МА>МВ
тогда
ВМ = МС, В1М1 = М1С1 (АМ и А1М1 - медианы),
а раз ВС = В1С1, то все педидущие четыре отрезка равны:
ВМ = МС = В1М1 = М1С1
далее уголВ = углуВ1(соответствующие углы равных треугольников)
АВ = А1В1 (соответствующие стороны равных треугольников)
на основании выше изложенного делаем вывод, что тр.АВМ = тр.А1В1М1(по двум сторонам и углу между ними)
а уже на основании равенства треугольников АВМ и А1В1М1 делаем вывод о равенстве наших медиан АМ и А1М1, что и требовалось доказать