Если провести диаметр OY (это я его так обозначил, чтобы как-то потом называть), параллельно CD и перпендикулярно (само собой) AB, то он пройдет через середину AB, то есть точки A и B симметричны относительно OY; Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр. Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим). Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.
Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр.
Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим).
Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.
a) Равные отрезки по осям - треугольник равносторонний.
b) По разности координат находим длины сторон треугольника.
А(2; 0; 5), В(3; 4; 0), С(2; 4; 0)
Квадрат Сторона
AB = √((xB-xA)²+(yB-yA)²+(zB-zA)²) = 1 16 25 42 6,480740698
BC = √((xC-xB)²+(yC-yB)²+(zC-zB)²) = 1 0 0 1 1
AC = √((xC-xA)²+(yC-yA)²+(zC-zA)²) = 0 16 25 41 6,403124237 .
По теореме косинусов находим углы:
Полупериметр р= 6,941932468 .
cos A = 0,98802352 cos B = 0,15430335 cos C = 0
A = 0,15492232 В = 1,415874007 С = 1,570796327 это радианы
8,876395081 81,12360492 90 это градусы.
Треугольник прямоугольный.
Можно было определить и по сумме квадратов сторон:
ВС^2 + AC^2 = AB^2.