1. Сумма внутренних углов четырехугольника равна 360 градусов. Сумма внутренних углов любого многоугольника равна 180(n-2), где n - число сторон. Подставив вместо него 4 получаем сумму равную 360 градусов. Утверждение верно. 2. Средняя линия трапеции равна ПОЛУсумме оснований. Утверждение неверно. 3. Параллелограмм - это четырехугольник. Любой четырехугольник можно вписать в окружность, если сумм противоположных углов равна 180 градусов. Не у любого параллелограмма выполняется это условие. Утверждение неверно.
1. Сумма внутренних углов четырехугольника равна 360 градусов. Сумма внутренних углов любого многоугольника равна 180(n-2), где n - число сторон. Подставив вместо него 4 получаем сумму равную 360 градусов. Утверждение верно. 2. Средняя линия трапеции равна ПОЛУсумме оснований. Утверждение неверно. 3. Параллелограмм - это четырехугольник. Любой четырехугольник можно вписать в окружность, если сумм противоположных углов равна 180 градусов. Не у любого параллелограмма выполняется это условие. Утверждение неверно.
2. Средняя линия трапеции равна ПОЛУсумме оснований.
Утверждение неверно.
3. Параллелограмм - это четырехугольник. Любой четырехугольник можно вписать в окружность, если сумм противоположных углов равна 180 градусов. Не у любого параллелограмма выполняется это условие.
Утверждение неверно.
2. Средняя линия трапеции равна ПОЛУсумме оснований.
Утверждение неверно.
3. Параллелограмм - это четырехугольник. Любой четырехугольник можно вписать в окружность, если сумм противоположных углов равна 180 градусов. Не у любого параллелограмма выполняется это условие.
Утверждение неверно.