В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
1 из трех точек, не лежащих на одной прямой, и трёх отрезков, их соединяющих
2 отрезок, соединяющий эту вершину с серединой противолежащей стороны
3 только три медианы
4 сумма длин всех его сторон
5 высота, проведённая к основанию является биссектрисой и медианой
6 перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону
7 все его стороны равны
8 Медиана равнобедренного треугольника, проведённая к его боковой стороне, является биссектрисой и высотой
9 всегда верно
Объяснение:
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
1 из трех точек, не лежащих на одной прямой, и трёх отрезков, их соединяющих
2 отрезок, соединяющий эту вершину с серединой противолежащей стороны
3 только три медианы
4 сумма длин всех его сторон
5 высота, проведённая к основанию является биссектрисой и медианой
6 перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону
7 все его стороны равны
8 Медиана равнобедренного треугольника, проведённая к его боковой стороне, является биссектрисой и высотой
9 всегда верно
Объяснение: