1.АВСД-квадрат, АС=10, АВ=ВС=х по теореме Пифагора
х^2+x^2=10^2
2x^2=100
x^2=50
x=5 корень из 2
2. Так как сумма углов трапеции 360, а трапеция равнобедренная, то острые углы при большем основании равны 45 градусов. Трапеция АВСД, АВС=135, угол ВАД=45, высота ВЕ=2, меньшее основание ВС=4
Рассмотрим треугольник, образованный высотой АВЕ, он прямоугольный (угол ВЕА-прямой), так в треуг. сумма углов 180 градусов, то угол АВЕ=45 градусов и равен углу ВАЕ, значит треуг. равнобедрен. и АЕ=ВЕ=2, опустив высоту СК, также получаем СК=СД=2, ВС=ЕК=4, значит АД=2+2+4=8.Площадь трапеции
S=1/2*(ВС+АД)*ВЕ
S=1/2(4+8)*2
S=12
3.S=1/2(a+b)h=168
h=3a и h=b/2, тогда
а=h/3 и b=2h
1/2(h/3+2h)h=168
h^2/3+2h^2=168*2
(h^2+6h^2)/3=336
7h^2=1008
h^2=144
h=12
a=12/3=4
b=12*2=24
4. в треуг. АВС, угол С=30(сумма углов 180), сторона ВС=СА=а, так АВС равнобедренный (угол А=В),
площадь тругольника равна 1/2 роизведению сторон на sin угла между ними.
Из т. A опустим перпендикуляр на прямую DE (см. прикрепленный рисунок). Пусть AH - этот перпендикуляр, (длину которого и требуется найти в задаче). Тогда AH⊥DE. Проведем отрезок CH в плоскости CDE. Т.к. по условию AC⊥CDE, то AH - наклонная, а AC - перпендикуляр (к плоскости CDE). И AH⊥DE (по построению), тогда по теореме обратной теореме "о трёх перпендикулярах", получаем, что DE⊥CH. Таким образом CH - это высота прямоугольного равнобедренного треугольника CDE. Найдем CH. Для этого найдем DE по т. Пифагора: DE² = CE² + CD² = (12√2)² + (12√2)² = 2*12² + 2*12² = 4*12², DE = √(4*12²) = 2*12. Т.к. треугольник CDE - равнобедренный, то его высота CH является и медианой. Поэтому DH = EH = DE/2 = 2*12/2 = 12. По т. Пифагора для ΔCDH. CH² = CD² - DH² = (12√2)² - 12² = 2*12² - 12² = 12², CH = √(12²) = 12. Т.к. AC⊥пл.CDE, то AC⊥CH, и ΔACH прямоугольный, ∠ACH = 90°. По т. Пифагора для ΔACH: AH² = CH² + AC² = 12² + 35² = 144 + 1225 = 1369, AH = √(1369) = 37. ответ. 37 дм.
1.АВСД-квадрат, АС=10, АВ=ВС=х по теореме Пифагора
х^2+x^2=10^2
2x^2=100
x^2=50
x=5 корень из 2
2. Так как сумма углов трапеции 360, а трапеция равнобедренная, то острые углы при большем основании равны 45 градусов. Трапеция АВСД, АВС=135, угол ВАД=45, высота ВЕ=2, меньшее основание ВС=4
Рассмотрим треугольник, образованный высотой АВЕ, он прямоугольный (угол ВЕА-прямой), так в треуг. сумма углов 180 градусов, то угол АВЕ=45 градусов и равен углу ВАЕ, значит треуг. равнобедрен. и АЕ=ВЕ=2, опустив высоту СК, также получаем СК=СД=2, ВС=ЕК=4, значит АД=2+2+4=8.Площадь трапеции
S=1/2*(ВС+АД)*ВЕ
S=1/2(4+8)*2
S=12
3.S=1/2(a+b)h=168
h=3a и h=b/2, тогда
а=h/3 и b=2h
1/2(h/3+2h)h=168
h^2/3+2h^2=168*2
(h^2+6h^2)/3=336
7h^2=1008
h^2=144
h=12
a=12/3=4
b=12*2=24
4. в треуг. АВС, угол С=30(сумма углов 180), сторона ВС=СА=а, так АВС равнобедренный (угол А=В),
площадь тругольника равна 1/2 роизведению сторон на sin угла между ними.
S=1/2(ВС*СА)sinC=36
1/2(а*а)sin30=36
a^2*sin30=72
a^2*1/2=72
а^2=144
a=12
Т.к. по условию AC⊥CDE, то AH - наклонная, а AC - перпендикуляр (к плоскости CDE). И AH⊥DE (по построению), тогда по теореме обратной теореме "о трёх перпендикулярах", получаем, что DE⊥CH.
Таким образом CH - это высота прямоугольного равнобедренного треугольника CDE. Найдем CH. Для этого найдем DE по т. Пифагора:
DE² = CE² + CD² = (12√2)² + (12√2)² = 2*12² + 2*12² = 4*12²,
DE = √(4*12²) = 2*12.
Т.к. треугольник CDE - равнобедренный, то его высота CH является и медианой. Поэтому DH = EH = DE/2 = 2*12/2 = 12.
По т. Пифагора для ΔCDH.
CH² = CD² - DH² = (12√2)² - 12² = 2*12² - 12² = 12²,
CH = √(12²) = 12.
Т.к. AC⊥пл.CDE, то AC⊥CH, и ΔACH прямоугольный, ∠ACH = 90°.
По т. Пифагора для ΔACH:
AH² = CH² + AC² = 12² + 35² = 144 + 1225 = 1369,
AH = √(1369) = 37.
ответ. 37 дм.