Теорема Фалеса: Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки. Как выполнять построение, у Вас подробно указано в задаче. Нет смысла повторять последовательность выполняемых действий. Главное- от одной точки отрезка (точки а) начертить полупрямую (луч АС) наклонно к данному отрезку. От этой точки А отметить на нем нужное количество точек (в данном случае 11) на равном расстоянии друг от друга, соединить последнюю точку (С) со вторым концом отрезка . Через каждую точку провести прямые параллельно СВ. Отрезок АВ будет разделен на 11 равных частей Готовый чертеж будет выглядеть так, как на рисунке, данном в приложении.
1) Обозначим координаты точки С(0:у;0). Расстояния от точки С до точек А и В равны. Запишем это условие в виде равенства. (6-0)²+(1-у)²+(0-0)² = (2-0)²+(5-у)²+(8-0)². Раскроем скобки и приведём подобные: 36+1-2у+у² = 4+25-10у+у²+64, 8у = 93-37 =56, у = 56/8 = 7. Координаты точки С(0;7;0).
2) По координатам точек находим длины сторон треугольника и по формуле Герона находим его площадь. АВ ВС АС Р р=Р/2 9,797959 8,4852814 8,48528 26,768522 13,3843, S (ABC)= 33,941125.
Как выполнять построение, у Вас подробно указано в задаче.
Нет смысла повторять последовательность выполняемых действий.
Главное- от одной точки отрезка (точки а) начертить полупрямую (луч АС) наклонно к данному отрезку. От этой точки А отметить на нем нужное количество точек (в данном случае 11) на равном расстоянии друг от друга, соединить последнюю точку (С) со вторым концом отрезка . Через каждую точку провести прямые параллельно СВ.
Отрезок АВ будет разделен на 11 равных частей
Готовый чертеж будет выглядеть так, как на рисунке, данном в приложении.
Расстояния от точки С до точек А и В равны.
Запишем это условие в виде равенства.
(6-0)²+(1-у)²+(0-0)² = (2-0)²+(5-у)²+(8-0)².
Раскроем скобки и приведём подобные:
36+1-2у+у² = 4+25-10у+у²+64,
8у = 93-37 =56,
у = 56/8 = 7.
Координаты точки С(0;7;0).
2) По координатам точек находим длины сторон треугольника и по формуле Герона находим его площадь.
АВ ВС АС Р р=Р/2
9,797959 8,4852814 8,48528 26,768522 13,3843,
S (ABC)= 33,941125.