Объяснение: Сделаем рисунок. Обозначим точку пересечения АК и LD буквой Е и рассмотрим ∆ АЕД и ∆ LMD. Они прямоугольные ( DL перпендикулярна АК по условию) и имеют общий угол при вершине D. Он равен градусной мере развернутого угла без ∠DEA и без ∠ЕАD. Угол ЕDA= 90°-24°=66°. ⇒ ∠ МLD=∠КАD=24°
LM⊥AD (дано) ⇒ LМ║CD. ⇒ LМ=CD. Т.к. АВСD – квадрат, то LM=AD.
∆ АКD=∆ LDМ по катету ( LM=AD) и острому углу при вершине D. Поэтому KD=MD. Катеты прямоугольного треугольника АDМ равны. следовательно, его острые углы равны 45°. ⇒∠OMD=45°
Объяснение:в основании образуется треугольник, состоящий из двух радиусов, к-ые относятся к дуге с 60°, и сторонной, полученной сечением квадрата. Сторону квадрата находим по Пифагору: √(a²+a²) = 4√2, a = 4. Основание треугольника так же равно 4. Этот треугольник, в первую очередь, является равнобедренным, так как имеет две равных сторон (радиусов окружности), но по той причине, что вершина равна 60, это правильный треугольник. Следовательно, все его стороны равны, что указывает, что радиусы равны 4. Зная радиус, мы можем найти длину окружности: 2πr=4π. Высотой цилиндра является сторона квадрата, т.к. второй пересекает его параллельно оси. Отсюда S=4π*4=16π
ответ: Угол DOM=69°
Объяснение: Сделаем рисунок. Обозначим точку пересечения АК и LD буквой Е и рассмотрим ∆ АЕД и ∆ LMD. Они прямоугольные ( DL перпендикулярна АК по условию) и имеют общий угол при вершине D. Он равен градусной мере развернутого угла без ∠DEA и без ∠ЕАD. Угол ЕDA= 90°-24°=66°. ⇒ ∠ МLD=∠КАD=24°
LM⊥AD (дано) ⇒ LМ║CD. ⇒ LМ=CD. Т.к. АВСD – квадрат, то LM=AD.
∆ АКD=∆ LDМ по катету ( LM=AD) и острому углу при вершине D. Поэтому KD=MD. Катеты прямоугольного треугольника АDМ равны. следовательно, его острые углы равны 45°. ⇒∠OMD=45°
Из суммы углов треугольника
Угол DOM=180°-∠ОМD-∠МDО=180°-45°-66°=69°
ответ:S=16π
Объяснение:в основании образуется треугольник, состоящий из двух радиусов, к-ые относятся к дуге с 60°, и сторонной, полученной сечением квадрата. Сторону квадрата находим по Пифагору: √(a²+a²) = 4√2, a = 4. Основание треугольника так же равно 4. Этот треугольник, в первую очередь, является равнобедренным, так как имеет две равных сторон (радиусов окружности), но по той причине, что вершина равна 60, это правильный треугольник. Следовательно, все его стороны равны, что указывает, что радиусы равны 4. Зная радиус, мы можем найти длину окружности: 2πr=4π. Высотой цилиндра является сторона квадрата, т.к. второй пересекает его параллельно оси. Отсюда S=4π*4=16π