Точка равноудалена от сторон прямоугольного треугольника, => эта точка проектируется в центр вписанной в треугольник окружности. радиус вписанной в треугольник окружности: r=(a+b-c)/2 1. по теореме Пифагора: c²=a²+b². a=9 см, b=12 см c²=9²+12². c=15 см r=(9+12-15)/2. r=3 см
2. прямоугольный треугольник: катет - расстояние от точки до плоскости треугольника, а=4 см катет - радиус вписанной в треугольник окружности, b=3 см гипотенуза - расстояние от точки до сторон треугольника, с. найти c²=3²+4² c=5 ответ: расстояние от точки до сторон прямоугольного треугольника 5 см
радиус вписанной в треугольник окружности: r=(a+b-c)/2
1. по теореме Пифагора:
c²=a²+b². a=9 см, b=12 см
c²=9²+12². c=15 см
r=(9+12-15)/2. r=3 см
2. прямоугольный треугольник:
катет - расстояние от точки до плоскости треугольника, а=4 см
катет - радиус вписанной в треугольник окружности, b=3 см
гипотенуза - расстояние от точки до сторон треугольника, с. найти
c²=3²+4²
c=5
ответ: расстояние от точки до сторон прямоугольного треугольника 5 см
cos∠B = 0
cos∠A = 0,6
cos∠C = 0,8
Объяснение:
Найдем длины сторон треугольника по формуле расстояния между точками:
Проверим по теореме, обратной теореме Пифагора, не является ли этот треугольник прямоугольным:
AC² = AB² + BC²
(5√2)² = (3√2)² + (4√2)²
50 = 18 + 32
50 = 50 - равенство верно, значит треугольник прямоугольный с гипотенузой АС.
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
Косинус прямого угла равен нулю.
cos∠B = 0
cos∠A = AB / AC = 3√2 / 5√2 = 3/5 = 0,6
cos∠C = BC / AC = 4√2 / 5√2 = 4/5 = 0,8