В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
abiersack
abiersack
15.04.2023 17:53 •  Геометрия

Площадь основания правильной четырёхугольной пирамиды SABCD равна 64. а) Постройте прямую пересечения плоскости SAC и плоскости, проходящей через вершину S этой пирамиды, середину стороны АВ и центр основания.

б) Найдите площадь боковой поверхности этой пирамиды, если площадь сечения пирамиды плоскостью SAC равна 64.

Спрятать решение
Решение.
Сторона основания пирамиды равна 8. Тогда диагональ основания AC=8 корень из 2 .

а) Пусть SH — высота пирамиды. Тогда H — середина основания пирамиды. Значит, SH — искомая прямая.

б) Площадь сечения, проходящего через S и диагональ AC, равна дробь, числитель — 1, знаменатель — 2 AC умножить на SH = 64, откуда SH = дробь, числитель — 2 умножить на 64, знаменатель — 8 корень из 2 . Пусть SM — высота грани SAB. Тогда

SM= корень из { SH в степени 2 плюс HM в степени 2 } = корень из { 128 плюс 16} = 12.

Следовательно, S_{SAB} = дробь, числитель — SM умножить на AB, знаменатель — 2 = 12 умножить на 4 = 48. Поэтому S_{бок}= 48 умножить на 4 = 192.
обьясните как это так получилось до 13:00

Показать ответ
Ответ:
dianaryabovaa
dianaryabovaa
25.07.2021 10:10

ответuhg

Объяснение:hjv

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота