Площина α перпендикулярна до катета AC прямокутного трикут- ника ABC і ділить його у відношенні AA1 : A1C = m : n. У якому від- ношенні площина α ділить гіпотенузу AB?
Итак, проведем высоту к боковой стороне. Высота образует прямой угол 90 градусов, и, следовательно, прямоугольный треугольник. В нашем равнобедренном треугольнике высота является также и медианой и биссектрисой. Мы знаем, что медиана делит сторону пополам, следовательно и наша высота делит боковую сторону пополам. Получаем - 20:2= 10 см (1 катет прямоугольного треугольника). Гипотенуза нам известна - 20см, тогда по теореме Пифагора наша сторона неизвестная в квадрате равна 20 в квадрате минус 10 в квадрате и это все равно 300 Сторона равна корню квадратному из 300 или 10 корней из 3 :)
Сторона равна корню квадратному из 300 или 10 корней из 3 :)
Найдем острые углы треугольника, они равны, т.к. треугольник равнобедренный:
180-120 = 60
60:2 = 30
проведем высоту к хорде.
малый треугольник - прямоугольник.
Катет, лежащий напротив угла в 30, равен 1\2 гипотенузы:
0,8м = 80см
80:2 = 40см
Найдем второй катет по т.Пифагора:
√(80²-40²) = √(6400 - 1600) = √4800 = √3*16*100 = 40√3
Найдем хорду: 40√3*2 = 80√3.
Второй
Найдем острые углы треугольника, они равны, т.к. треугольник равнобедренный:
180-120 = 60
60:2 = 30
По теореме синусов: b\sinb = c\sinc
b = c*sinb/sinс
b = 80*√3/2*2 = 80√3