Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
Расстояние между двумя точками -- это отрезок, соединяющий эти точки.
Воспользуемся формулой нахождения расстояния между двумя точками.
Пусть А(a₁; a₂), B(b₁, b₂), тогда
В нашем случае даны точки O(0; 0) и M(x; y). Подставим их координаты в формулу:
Воспользуемся координатной плоскость и теоремой Пифагора.
Изобразим на координатной плоскости точки O(0; 0) и M(x; y). Соединим их. Затем опустим перпендикуляры от точки М на ось ОХ и OY, обозначим получившиеся точки N(x; 0) и K(0; y).
(координатная плоскость во вложениях)
Получаем следующее: длина отрезка OK равна y - 0 = y, ON = x.
Также MN = OK = y
Рассмотрим ΔMNO. Он прямоугольный. Применим к нему теорему Пифагора и выразим гипотенузу OM:
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).
ответ: √(x² + y²)
Объяснение:
Расстояние между двумя точками -- это отрезок, соединяющий эти точки.
Воспользуемся формулой нахождения расстояния между двумя точками.
Пусть А(a₁; a₂), B(b₁, b₂), тогда
В нашем случае даны точки O(0; 0) и M(x; y). Подставим их координаты в формулу:
Воспользуемся координатной плоскость и теоремой Пифагора.
Изобразим на координатной плоскости точки O(0; 0) и M(x; y). Соединим их. Затем опустим перпендикуляры от точки М на ось ОХ и OY, обозначим получившиеся точки N(x; 0) и K(0; y).
(координатная плоскость во вложениях)
Получаем следующее: длина отрезка OK равна y - 0 = y, ON = x.
Также MN = OK = y
Рассмотрим ΔMNO. Он прямоугольный. Применим к нему теорему Пифагора и выразим гипотенузу OM: