АF-высота, она образует прямоугольный треугольник АВF, уголF=90° АВ-гипотенуза, АF=1/2×AВ(половине гипотенузы), значит, угол(противолежащий) В=30° или 45°( т.к. по теореме в прямоугольном треугольнике напротив этих углов лежит сторона равная половине гипотенузы). если В=45°, значит, уголА=45°, т.к. сумма острых углов треугольника =90°,FB=4,5 следовательно, проверка: по теореме Пифагора: АВ^2=АF^2+FB^2 81=20,25+FB^2 FB^2=60,75 FB=7.79422 FB≠AF значит, угол В=30° А=180-30=150°(сумма смежных углов ромба =180°).
ТК. Внешний угол является смежным в внутренним углом тругольника, а сумма смежных углов =180 , то найдем соответсвующий ему внутренний: 180-40 = 140. Этот угол явлеятся углом при вершине, т.к . в треугольнике не может быть большо одного тупого угла. Следовательно найдем углы при основании. Тут есть два т.к. сумма углов труегольника = 180, а углы при основании равнобедренного треугольника равны). Либо второй т.к. внешний угол равен сумме двух внутренних, не смежных с ним углов, а углв при основаннии равнобедренного равны).
АВ-гипотенуза, АF=1/2×AВ(половине гипотенузы), значит, угол(противолежащий) В=30° или 45°( т.к. по теореме в прямоугольном треугольнике напротив этих углов лежит сторона равная половине гипотенузы).
если В=45°, значит, уголА=45°, т.к. сумма острых углов треугольника =90°,FB=4,5
следовательно,
проверка:
по теореме Пифагора:
АВ^2=АF^2+FB^2
81=20,25+FB^2
FB^2=60,75
FB=7.79422
FB≠AF
значит, угол В=30°
А=180-30=150°(сумма смежных углов ромба =180°).
ТК. Внешний угол является смежным в внутренним углом тругольника, а сумма смежных углов =180 , то найдем соответсвующий ему внутренний: 180-40 = 140. Этот угол явлеятся углом при вершине, т.к . в треугольнике не может быть большо одного тупого угла. Следовательно найдем углы при основании. Тут есть два т.к. сумма углов труегольника = 180, а углы при основании равнобедренного треугольника равны). Либо второй т.к. внешний угол равен сумме двух внутренних, не смежных с ним углов, а углв при основаннии равнобедренного равны).
ответ: 20 градусов.