Построим цилиндр и проведем сечение (АВСД), удовлетворяющее условиям задачи.
Данное сечение является прямоугольником со сторонами равными высоте данного цилиндра (АД и ВС) и хорде, удаленной на 4 см от центра основания (Центра окружности О) (АВ и ДС).
Найдем данную хорду:
Рассмотрим треугольник АОВ где АВ хорда данной окружности, АО и ВО радиусы, а ОН высота (расстояние от центра окружности до хорды). Так как АО=ВО то высота будет являться и медианой – то есть АВ= АН*2.
Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные двум другим сторонам:
КО:СО=КВ:СВ=1:2
По т. Пифагора КС=√(KB*+CB*)=√(a*+4a*)=a√5 ⇒
KO=KC:3=(a√5):3
Из ∆ ОКВ по т. синусов
КО:sin 45°=KB:sinBOK
откуда
ответ: arcsin 0,3√10. ( это синус 71,565° или 71°34')
-------
Можно найти длину биссектрисы ВО и затем найти косинус угла ВОК, (затем, если необходимо, по известному тождеству sina*+cosa*=1 вычислить синус того угла).
Построим цилиндр и проведем сечение (АВСД), удовлетворяющее условиям задачи.
Данное сечение является прямоугольником со сторонами равными высоте данного цилиндра (АД и ВС) и хорде, удаленной на 4 см от центра основания (Центра окружности О) (АВ и ДС).
Найдем данную хорду:
Рассмотрим треугольник АОВ где АВ хорда данной окружности, АО и ВО радиусы, а ОН высота (расстояние от центра окружности до хорды). Так как АО=ВО то высота будет являться и медианой – то есть АВ= АН*2.
По теореме Пифагора найдем АН
АН=√(АО²-ОН²)=√(5²-4²)=√9=3 см.
Значит АВ=3*2=6 см.
Площадь данного сечения равна:
Sabcd=АВ*ВС=6*8=48 кв. см.
Рассмотрим ∆ КВС. Пусть КВ=а, тогда ВС=2а.
Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные двум другим сторонам:
КО:СО=КВ:СВ=1:2
По т. Пифагора КС=√(KB*+CB*)=√(a*+4a*)=a√5 ⇒
KO=KC:3=(a√5):3
Из ∆ ОКВ по т. синусов
КО:sin 45°=KB:sinBOK
откуда
ответ: arcsin 0,3√10. ( это синус 71,565° или 71°34')
-------
Можно найти длину биссектрисы ВО и затем найти косинус угла ВОК, (затем, если необходимо, по известному тождеству sina*+cosa*=1 вычислить синус того угла).