Полная площадь поверхности пирамиды состоит и суммы площадей её боковой поверхности и основания. Так как её апофема перпендикулярна ребру основания мы найдём площадь её боковой грани по формуле площади треугольника, поскольку боковая грань пирамиды - это равнобедренный треугольник: S=½×a×h, где в нашем случае а- это сторона боковой грани, а h -высота (апофема) которая проведена к стороне:
Sбок.гр=½×3×5=15÷2=7,5см²
Так как таких граней 6 то площадь боковой поверхности пирамиды составит: Sбок.пов=7,5×6=45см²
Теперь найдём площадь основания. Правильный шестиугольник состоит из 6-ти правильных треугольников со стороной 3см. Площадь правильного треугольника вычисляется по формуле:
S=(a²√3)/4 - где а-сторона треугольника, которая =3, подставим в эту формулу наши данные:
S∆=(3²√3)/4=9√3/4
Таких треугольков 6 поэтому площадь основания составит:
Sосн=9√3/4×6=27√3/2
Теперь сложим эти площади и получим площадь всей поверхности пирамиды:
Sпол=27√3/2+45=13,5√3+45см²
Можно так и оставить, но если нужно вычислить полностью, то: √3≈1,73, подставим это значение:
Прямая АО1 - линия пересечения плоскостей АВС1 и BCD1.
Объяснение:
Параллельные плоскости пересекаются третьей плоскостью по параллельным прямым.
Следовательно, плоскость A1B1C1D1E1F1 (верхнее основание правильной шестиугольной призмы) пересечется секущей плоскостью АВС1 по прямой С1F1, так как в правильном шестиугольнике сторона АВ параллельна стороне СF => AB параллельна С1F1.
Эта же плоскость пересечется секущей плоскостью BCD1 по прямой А1D1, так как ВС параллельна AD и параллельна A1D1.
Прямые C1F1 и A1D1 пересекаются в точке О1 (пересечение диагоналей правильного шестиугольника).
Следовательно, точка О1 - общая для плоскостей АВС1 и BCD1. Точка А также принадлежит и плоскости АВС1 и плоскости BCD1. Через две точки можно провести прямую и при том ТОЛЬКО ОДНУ.
Значит прямая АО1 является линией пересечения плоскостей АВС1 и BCD1.
Sпол=13,5√3+45≈68,355см²
Объяснение:
Полная площадь поверхности пирамиды состоит и суммы площадей её боковой поверхности и основания. Так как её апофема перпендикулярна ребру основания мы найдём площадь её боковой грани по формуле площади треугольника, поскольку боковая грань пирамиды - это равнобедренный треугольник: S=½×a×h, где в нашем случае а- это сторона боковой грани, а h -высота (апофема) которая проведена к стороне:
Sбок.гр=½×3×5=15÷2=7,5см²
Так как таких граней 6 то площадь боковой поверхности пирамиды составит: Sбок.пов=7,5×6=45см²
Теперь найдём площадь основания. Правильный шестиугольник состоит из 6-ти правильных треугольников со стороной 3см. Площадь правильного треугольника вычисляется по формуле:
S=(a²√3)/4 - где а-сторона треугольника, которая =3, подставим в эту формулу наши данные:
S∆=(3²√3)/4=9√3/4
Таких треугольков 6 поэтому площадь основания составит:
Sосн=9√3/4×6=27√3/2
Теперь сложим эти площади и получим площадь всей поверхности пирамиды:
Sпол=27√3/2+45=13,5√3+45см²
Можно так и оставить, но если нужно вычислить полностью, то: √3≈1,73, подставим это значение:
13,5×1,73+45=23,355+45=68,355см²
Прямая АО1 - линия пересечения плоскостей АВС1 и BCD1.
Объяснение:
Параллельные плоскости пересекаются третьей плоскостью по параллельным прямым.
Следовательно, плоскость A1B1C1D1E1F1 (верхнее основание правильной шестиугольной призмы) пересечется секущей плоскостью АВС1 по прямой С1F1, так как в правильном шестиугольнике сторона АВ параллельна стороне СF => AB параллельна С1F1.
Эта же плоскость пересечется секущей плоскостью BCD1 по прямой А1D1, так как ВС параллельна AD и параллельна A1D1.
Прямые C1F1 и A1D1 пересекаются в точке О1 (пересечение диагоналей правильного шестиугольника).
Следовательно, точка О1 - общая для плоскостей АВС1 и BCD1. Точка А также принадлежит и плоскости АВС1 и плоскости BCD1. Через две точки можно провести прямую и при том ТОЛЬКО ОДНУ.
Значит прямая АО1 является линией пересечения плоскостей АВС1 и BCD1.