1) Так как ABCD - ромб, то его противоположные стороны параллельны: AD || DC; BCMN - трапеция, следовательно основы DC || NM параллельны Из 2х утверждений выше следуя теореме про транзитивность прямых (если две прямые параллельны третьей, то эти две прямые между собой тоже параллельны) => AD || DC
2) Так как α || β, то А1В1 || A2B2 (через SN и SM лучи, которые пересекаются, можно провести плоскость, и при том только одну; сл-но плоскость, которая пересекает 2 параллельные плоскости будет пересекать их по параллельным прямым, а у нас А1В1 и A2B2 будут на них лежать, сл-но и отрезки, которые лежать на параллельных прямых, тоже будут параллельны).
ΔA1SB1~ΔA2SB2 по 3ему признаку (по 3м углам), значит выполняется следующее соотношение:
Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400
1) Так как ABCD - ромб, то его противоположные стороны параллельны: AD || DC;
BCMN - трапеция, следовательно основы DC || NM параллельны
Из 2х утверждений выше следуя теореме про транзитивность прямых (если две прямые параллельны третьей, то эти две прямые между собой тоже параллельны) => AD || DC
2) Так как α || β, то А1В1 || A2B2 (через SN и SM лучи, которые пересекаются, можно провести плоскость, и при том только одну; сл-но плоскость, которая пересекает 2 параллельные плоскости будет пересекать их по параллельным прямым, а у нас А1В1 и A2B2 будут на них лежать, сл-но и отрезки, которые лежать на параллельных прямых, тоже будут параллельны).
ΔA1SB1~ΔA2SB2 по 3ему признаку (по 3м углам), значит выполняется следующее соотношение:
Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400