"Начертить четырёхугольник, у которого есть минимум 3 прямых угла, и две последовательные стороны имеют одинаковую длину"
Если это так, то рассуждаем следующим образом.
1. Сумма углов четырёхугольника равна 360°. Три из них по условию в сумме дали 270°, тогда и третий равен 90°, речь в задаче по определению идёт о прямоугольнике.
2. Смежные ( соседние, имеющие общую вершину) стороны этого прямоугольника, которые при изображении откладывают последовательно друг за другом, равные. Противолежащие стороны прямоугольника равны по свойству, тогда все стороны получатся равными, данный прямоугольник является квадратом.
Отрезки касательных, проведенных из одной точки, равны. Пусть х - коэффициент пропорциональности. Тогда отрезки сторон треугольника равны 5х и 8х соответственно (см. на рисунке). Воспользуемся двумя формулами площади треугольника: S = pr, где р - полупериметр, r - радиус вписанной окружности, S = √(p·(p - a)(p - b)(p - c)) - формулой Герона. √(p·(p - a)(p - b)(p - c)) = pr
Пусть а и b - боковые стороны, с - основание. а = b = 13х, с = 10х. р = (13x + 13x + 10x)/2 = 18x Получаем уравнение: √(18x · 5x · 5x · 8x) = 18x · 10 5x · 3 · 4x = 180x 60x² - 180x = 0 x(x - 3) = 0 x = 3 (х = 0 не подходит по смыслу задачи) с = 10х = 30 см
квадрат.
Объяснение:
Думаю, что задание звучало по-другому:
"Начертить четырёхугольник, у которого есть минимум 3 прямых угла, и две последовательные стороны имеют одинаковую длину"
Если это так, то рассуждаем следующим образом.
1. Сумма углов четырёхугольника равна 360°. Три из них по условию в сумме дали 270°, тогда и третий равен 90°, речь в задаче по определению идёт о прямоугольнике.
2. Смежные ( соседние, имеющие общую вершину) стороны этого прямоугольника, которые при изображении откладывают последовательно друг за другом, равные. Противолежащие стороны прямоугольника равны по свойству, тогда все стороны получатся равными, данный прямоугольник является квадратом.
ответ: необходимо начертить квадрат.
Пусть х - коэффициент пропорциональности. Тогда отрезки сторон треугольника равны 5х и 8х соответственно (см. на рисунке).
Воспользуемся двумя формулами площади треугольника:
S = pr, где р - полупериметр, r - радиус вписанной окружности,
S = √(p·(p - a)(p - b)(p - c)) - формулой Герона.
√(p·(p - a)(p - b)(p - c)) = pr
Пусть а и b - боковые стороны, с - основание.
а = b = 13х, с = 10х.
р = (13x + 13x + 10x)/2 = 18x
Получаем уравнение:
√(18x · 5x · 5x · 8x) = 18x · 10
5x · 3 · 4x = 180x
60x² - 180x = 0
x(x - 3) = 0
x = 3 (х = 0 не подходит по смыслу задачи)
с = 10х = 30 см