1. Переведем метры в сантиметры: a=6м=600см, b=8м=800см. Зная стороны, можно найти периметр участка: 2(a+b)=2*600+2*800=1200+1600=2800см. 2800см/10см=280 штук.
2. Представим меньшую сторону прямоугольника, как x. Тогда большая сторона будет равна 2,5x. Следовательно,
x*2,5x=250
2,5x²=250
x²=100
x=10см. Из этого следует, что 2,5x=25см.
3. Площадь прямоугольника S=8*18=144. S прямоугольника = S квадрата, S квадрата = a², значит a=12см
4. Площадь трапеции равна произведению высоты на полусумму оснований:
S=h*(a+b)/2
Высота этой трапеции является катетом прямоугольного треугольника и противолежит углу 30°, поэтому равен половине гипотенузы – стороны трапеции, к которой этот угол прилежит.
1. Переведем метры в сантиметры: a=6м=600см, b=8м=800см. Зная стороны, можно найти периметр участка: 2(a+b)=2*600+2*800=1200+1600=2800см. 2800см/10см=280 штук.
2. Представим меньшую сторону прямоугольника, как x. Тогда большая сторона будет равна 2,5x. Следовательно,
x*2,5x=250
2,5x²=250
x²=100
x=10см. Из этого следует, что 2,5x=25см.
3. Площадь прямоугольника S=8*18=144. S прямоугольника = S квадрата, S квадрата = a², значит a=12см
4. Площадь трапеции равна произведению высоты на полусумму оснований:
S=h*(a+b)/2
Высота этой трапеции является катетом прямоугольного треугольника и противолежит углу 30°, поэтому равен половине гипотенузы – стороны трапеции, к которой этот угол прилежит.
h=36/2=18см
S=18*(45+68)/2=18*113=1017см²
Объяснение:
Дано:
ΔABC - прямоугольный и равнобедренный
∠С = 90° AC = BC
AB = 12 см CM⊥(ABC)
CM = 6 см
--------------------------------------------------------------------
Найти:
ρ(M,AB) - ?
1) На рисунке проведем CH⊥AB
2) CM⊥AB, так как CM⊥(ABC), AB⊂(ABC)
CH⊥AB по построению, значит, MH⊥AB по теореме о трёх перпендикулярах, тогда MH = ρ(M,AB)
3) Так как ΔABC - прямоугольный и равнобедренный, то CH - высота и медиана, тогда:
CH = AH = BH = 1/2 × AB = 1/2 × 12 см = 6 см
4) CM⊥(ABC), CH⊂(ABC), значит, CM⊥CH и ΔMCH - прямоугольный.
5) Воспользуемся по теореме Пифагора в ΔMCH:
MH² = CM² + CH² - теорема Пифагора
MH = √CM² + CH² = √(6 см)² + (6 см)² = √36 см² + 36 см² = √72 см² = √36×2 см² = 6√2 см ⇒ ρ(M,AB) = MH = 6√2 см
ответ: ρ(M,AB) = 6√2 см
P.S. Рисунок показан внизу↓