Из условия AA1 = BB1 = CC1 = DD1 = 2AB = 2BC = 2CD = 2AD. Высота правильной призмы равна ее высоте AA1. AA1 = 8см, AB = AA1/2 = 4 см. Поскольку AF = AB и BC = CP = 4 см, то стороны треугольника BF и BP равны 8 см. Чтобы найти площадь основания пирамиды, нужно найти площадь прямоугольного треугольника FBP с прямым углом B. Площадь прямоугольного треугольника можно выразить через катеты, то есть S = (FB*BP)/2, S = (8*8)/2 = 64/2 = 32 см^2.
Объем пирамиды: V = (S(BFP)*BB1)/3, V = (32*8)/3 = 256/3 см^3
Задание: 3
Из условия AA1 = BB1 = CC1 = DD1 = 2AB = 2BC = 2CD = 2AD. Высота правильной призмы равна ее высоте AA1. AA1 = 8см, AB = AA1/2 = 4 см. Поскольку AF = AB и BC = CP = 4 см, то стороны треугольника BF и BP равны 8 см. Чтобы найти площадь основания пирамиды, нужно найти площадь прямоугольного треугольника FBP с прямым углом B. Площадь прямоугольного треугольника можно выразить через катеты, то есть S = (FB*BP)/2, S = (8*8)/2 = 64/2 = 32 см^2.
Объем пирамиды: V = (S(BFP)*BB1)/3, V = (32*8)/3 = 256/3 см^3
Объяснение:
Задание 5
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
НЕВЕРНЫЙ ОТВЕТ -3
ЗАДАНИЕ 6
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
h=√(a*b) , 2,5=√(1,5*b) , 2,5²=1,5*b , (5/2)² =3/2*b , b=25/6 (cм)
ЗАДАНИЕ 7
Найдем гипотенузу a+b=800+100=900(мм).
Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
с=√(а*(а+b) ,с=√(800*900)=√(2*400*900)=20*30√2=600√2(мм)