Точка равноудалённая от катетов образует внутри прямоугольного треугольника квадрат со стороной а, вершины которого - вершина прямого угла, точка на гипотенузе и две точки на катетах, от которых равноудалена заданная. Внутри прямоугольного образовались квадрат и два подобные между собой прямоугольных треугольника, которые подобны исходному треугольнику . пусть Один из катетов прямоугольного треугольника(1) - х и гипотенузой - 40 см, тогда соответствующий катет прямоугольного треугольника(2) - а см и гипотенузой - 30 см. Составим систему уравнений: Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
В равнобедренном тр-ке боковые стороны равны. Биссектриса в равнобедренном тр-ке является его высотой и медианой. Биссектриса равнобедренного тр-ка делит его на 2 равных прямоугольных тр-ка.. Рассмотрим один из них: 1 катет = = биссектрисе =15см, второй катет= половине основания данного в задаче тр-ка = Х, гипотенуза = боковой стороне = 17 см. По теореме Пифагора находим катет (Х) Х^2 = 17^2 - 15^2 X^2 = 289 - 225 = 64 X = 8 Искомая S тр-ка = 2( 8*15)/ 2 = 120(см^2) Искомый периметр тр-ка = 17 +17+ 16= 50 (см)
Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
Биссектриса в равнобедренном тр-ке является его высотой и медианой.
Биссектриса равнобедренного тр-ка делит его на 2 равных прямоугольных тр-ка..
Рассмотрим один из них: 1 катет = = биссектрисе =15см, второй катет= половине основания данного в задаче тр-ка = Х, гипотенуза = боковой стороне = 17 см. По теореме Пифагора находим катет (Х)
Х^2 = 17^2 - 15^2
X^2 = 289 - 225 = 64
X = 8
Искомая S тр-ка = 2( 8*15)/ 2 = 120(см^2)
Искомый периметр тр-ка = 17 +17+ 16= 50 (см)