Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: AC²=AB²+BC²-2*AB*BC*cos∠B Известно, что АВ=ВС+4. Подставляем все известные значения в формулу: 14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120° 196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2) 196=2BC²+8BC+16+BC²+4BC 3BC²+12BC-196+16=0 3BC²+12BC-180=0 |:3 BC²+4BC-60=0 D=4²-4*(-60)=16+240=256=16² BC=(-4-16)/2=-10 - не подходит BC=(-4+16)/2=6 см АВ=6+4=10 см
AC²=AB²+BC²-2*AB*BC*cos∠B
Известно, что АВ=ВС+4. Подставляем все известные значения в формулу:
14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120°
196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2)
196=2BC²+8BC+16+BC²+4BC
3BC²+12BC-196+16=0
3BC²+12BC-180=0 |:3
BC²+4BC-60=0
D=4²-4*(-60)=16+240=256=16²
BC=(-4-16)/2=-10 - не подходит
BC=(-4+16)/2=6 см
АВ=6+4=10 см
ответ: АВ=10 см, ВС=6 см.
Длина трубы 41 целая 80/81 метров.
Объяснение:
Труба BC дает тень AC, кол DE дает тень DA.
В ΔABC BC║DE, так как труба и кол вертикальны, т.е. стоят под углом 90° к поверхности земли.
ΔABC подобен ΔADE по двум углам: ∠A общий, ∠ACB = ∠ADE = 90° (или как соответствующие углы при параллельных прямых BC║DE и секущей AC).
Из подобия треугольников следует:
CB/ED = CA/DA; CB / 1,9 м = 35,8 м / 1,62 м; СВ = (35,8 м * 1,9 м)/1,62 м = 68,02 /1,62 м = 41 целая 160/162 м = 41 целая 80/81 метров.
Длина трубы 41 целая 80/81 метров.