Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
Дуга равна соответственному центральному углу.
∪CA = 360°−∪AB−∪BC = 360−96−106 = 158°
I — центр вписанной окружности в треугольник; IA = IB = IC — радиусы.
∢AIC = ∪CA = 158°; ∢AIB = ∪AB = 96°; ∢BIC = ∪BC = 106°
IA ⊥ LM, IB ⊥ MN, IC ⊥ NL (радиус ⊥ к касательной)
∢IAM = ∢MBI = ∢IBN = ∢NCI = ∢ICL = ∢LAI = 90°
∢L= 360°−∢AIC−∢LAI−∢ICL = 360−158−90−90 = 360−180−158 =180(2-1)-158=180-158 = 22° (из 4-угольника AICL)
аналогично для других углов:
∢ M= 180−96 = 84°
∢ N= 180−106 = 74°
∢L= 22°∢M = 84°∢N = 74°∪CA = 158°