Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
Сделаем рисунок. Основание данной правильной пирамиды - квадрат ABCD Из точки К проведем прямую KN параллельно АС. Прямая параллельна плоскости, когда она параллельна прямой, лежащей в этой плоскости. Следовательно, АС будет параллельна плоскости, которой принадлежит прямая КN, проведенная параллельно АС, и наоборот, плоскость, в которой лежит КN, параллельна прямой АС. Рассмотрим треугольник АSС. В нем КN параллельна АС и отсекает подобный треугольнику АSС треугольник KSC с коэффициентом подобия, следующим из отношения SK:AK SK - 2 части, AK - 1 часть, AS=3 части. АS:KS=3:2 ⇒ коэффициент подобия k=3/2 АС:KN=3/2 Диагональ квадрата d=a√2, сторона квадрата в основании равна 2, ⇒AC=2√2 2√2:KN=3/2 3KN=4√2 KN=(4√2):3 В подобных фигурах все линейные размеры пропорциональны. SP:PO=SK:AK=2:1 SO- высота пирамиды, а также высота и медиана равнобедренного треугольника DSB, а точка Р, которая делит медиану в отношении 2:1, - точка, в которой пересекаются медианы треугольника. Прямая ВМ лежит в плоскости сечения, проходит через точку пересечения медиан Р в треугольнике BSD и является его медианой. АС⊥SO, KN||AC, следовательно, KN⊥плоскости треугольника DSB и любой прямой, лежащей в этой плоскости. KN⊥BМ, и эти отрезки - диагонали четырехугольника KMNB, ограничивающего плоскость сечения. Площадь выпуклого четырехугольника, диагонали которого взаимно перпендикулярны, равна половине произведения этих диагоналей. Длина диагонали KN уже найдена, она равна (4√2):3. Длину диагонали МВ, как медианы треугольника SDB, найдем по формуле медианы: М=0,5√(2а²+2b ² - c ² ), где с - сторона, к которой проведена медиана, а и b - две другие стороны. М=0,5√(2SB²+2BD² - SD² ) М=0,5√(32+16 - 16 )=0,5√32=2√2 S KMNB=((2√2)*(4√2):3)):2=8/3 = 2 ²|₃ (единиц площади) ------- [email protected]
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5
Основание данной правильной пирамиды - квадрат ABCD
Из точки К проведем прямую KN параллельно АС.
Прямая параллельна плоскости, когда она параллельна прямой, лежащей в этой плоскости.
Следовательно, АС будет параллельна плоскости, которой принадлежит прямая КN, проведенная параллельно АС, и наоборот, плоскость, в которой лежит КN, параллельна прямой АС.
Рассмотрим треугольник АSС.
В нем КN параллельна АС и отсекает подобный треугольнику АSС треугольник KSC с коэффициентом подобия, следующим из отношения SK:AK
SK - 2 части, AK - 1 часть, AS=3 части.
АS:KS=3:2 ⇒ коэффициент подобия k=3/2
АС:KN=3/2
Диагональ квадрата d=a√2,
сторона квадрата в основании равна 2, ⇒AC=2√2
2√2:KN=3/2
3KN=4√2
KN=(4√2):3
В подобных фигурах все линейные размеры пропорциональны.
SP:PO=SK:AK=2:1
SO- высота пирамиды, а также высота и медиана равнобедренного треугольника DSB, а точка Р, которая делит медиану в отношении 2:1, - точка, в которой пересекаются медианы треугольника.
Прямая ВМ лежит в плоскости сечения, проходит через точку пересечения медиан Р в треугольнике BSD и является его медианой.
АС⊥SO, KN||AC, следовательно,
KN⊥плоскости треугольника DSB и любой прямой, лежащей в этой плоскости.
KN⊥BМ, и эти отрезки - диагонали четырехугольника KMNB, ограничивающего плоскость сечения.
Площадь выпуклого четырехугольника, диагонали которого взаимно перпендикулярны, равна половине произведения этих диагоналей.
Длина диагонали KN уже найдена, она равна (4√2):3.
Длину диагонали МВ, как медианы треугольника SDB, найдем по формуле медианы:
М=0,5√(2а²+2b ² - c ² ), где с - сторона, к которой проведена медиана, а и b - две другие стороны.
М=0,5√(2SB²+2BD² - SD² )
М=0,5√(32+16 - 16 )=0,5√32=2√2
S KMNB=((2√2)*(4√2):3)):2=8/3 = 2 ²|₃ (единиц площади)
-------
[email protected]