Чтобы рисунок соответствовал условию задачи, воспользуемся для его построения окружностями с центром в точке А и радиусом АВ, и с центром в точке D и радиусом СD. Обозначим середину ВС буквой М. Нужно доказать, что биссектриса угла D пересекает ВС в точке М. По условию АD=АВ+СD, следовательно, АВ=АК, КD=СD Треугольник АВК равнобедренный, АЕ - биссектриса, ⇒ АЕ- ещё и высота, и медиана. Высота треугольника перпендикулярна стороне, к которой проведена⇒ угол ВЕА=∠АЕК=90º. Δ АDС равнобедренный, биссектриса DН- его высота и медиана. ⇒ угол СНD=∠КНD=90º. В треугольнике КВС отрезки ВМ=МС по условию КН=НС, т.к. DН - медиана, ВЕ=ЕК, т.к. АЕ - медиана⇒ МН - средняя линия. и ЕМ- средняя линия ЕМ=КН, МН=ЕК, ⇒ МН||ВК и ЕМ||КН ∠МЕК=90º как смежный с ∠AEK, поэтому ∠ЕМН=90º как соответственный ∠ВЕМ при прямых MH||ВК и секущей МЕ. Четырехугольник ЕМНК - прямоугольник. . Через одну точку на прямой можно провести только один перпендикуляр. ⇒ НМ - продолжение DН. ⇒ Биссектриса DМ угла D проходит через середину стороны ВС, ч.т.д.
Определение: "Гомотетия - преобразование плоскости (или пространства), заданное центром O и коэффициентом k ≠ 0, переводящее каждую точку X в точку X ′ такую, что OX ′ = k·OX.
Построение.
Из точки О - центра гомотетии проводим лучи а, b и с через вершины А, В и С данного нам треугольника соответственно.
На этих лучах от центра О откладываем отрезки OA', OB' и OC', равные ОА·k = 1,5·ОА, ОВ·k = 1,5·ОВ и ОС·k = 1,5·ОС.
и с центром в точке D и радиусом СD.
Обозначим середину ВС буквой М.
Нужно доказать, что биссектриса угла D пересекает ВС в точке М.
По условию АD=АВ+СD, следовательно, АВ=АК, КD=СD
Треугольник АВК равнобедренный, АЕ - биссектриса, ⇒
АЕ- ещё и высота, и медиана.
Высота треугольника перпендикулярна стороне, к которой проведена⇒
угол ВЕА=∠АЕК=90º.
Δ АDС равнобедренный, биссектриса DН- его высота и медиана. ⇒
угол СНD=∠КНD=90º.
В треугольнике КВС отрезки ВМ=МС по условию
КН=НС, т.к. DН - медиана,
ВЕ=ЕК, т.к. АЕ - медиана⇒
МН - средняя линия. и ЕМ- средняя линия
ЕМ=КН, МН=ЕК, ⇒
МН||ВК и
ЕМ||КН
∠МЕК=90º как смежный с ∠AEK, поэтому
∠ЕМН=90º как соответственный ∠ВЕМ при прямых MH||ВК и секущей МЕ.
Четырехугольник ЕМНК - прямоугольник. .
Через одну точку на прямой можно провести только один перпендикуляр. ⇒
НМ - продолжение DН. ⇒
Биссектриса DМ угла D проходит через середину стороны ВС, ч.т.д.
Построение в объяснении.
Объяснение:
Определение: "Гомотетия - преобразование плоскости (или пространства), заданное центром O и коэффициентом k ≠ 0, переводящее каждую точку X в точку X ′ такую, что OX ′ = k·OX.
Построение.
Из точки О - центра гомотетии проводим лучи а, b и с через вершины А, В и С данного нам треугольника соответственно.
На этих лучах от центра О откладываем отрезки OA', OB' и OC', равные ОА·k = 1,5·ОА, ОВ·k = 1,5·ОВ и ОС·k = 1,5·ОС.
Полученные точки A', B' и C' соединяем отрезками.
Получили треугольник A'B'C' гомотетичный данному.