На рисунке голубым это картина. Вокруг окантовка. Видно что в две стороны увеличилась и Ширина и длина.
Значит обозначаем окантовка =Х Ширина стала =2х; Длина= стала 2х; Площадь с окантовкой стала=558см^2 S -площадь прямоугольника; a -ширина b -длина; S=a•b; Уравнение (10+2х)•(20+2х)=504 10•20+10•2х+2х•20+2х•2х-504=0 200+20х+40х+4х^2-504=0 4х^2+60х-304=0 Разделим на 2 все 2х^2+30х-152=0 D=b^2-4•a•c= 30^2- 4•2•(-152)= 900-8•(-152)=900+1216=2116 X1,2=(-b+-корень из D)/(2•a); X1=(-30-46)/2•2=-76/4=-19не подходит; Х2=(-30+46)/2•2=16/4=4 см
ΔABC,
ΔA1B1C1,
AB=A1B1, ∠A=∠A1, ∠B=∠B1.
Доказать:
ΔABC= ΔA1B1C1
Доказательство:
Так как AB=A1B1, то треугольник A1B1C1 можно наложить на треугольник ABC так, чтобы
сторона A1B1 совместилась со стороной AB,точки C1 и С лежали по одну сторону от прямой AB.
Поскольку ∠A=∠A1, сторона A1С1 при этом наложится на луч AC.
Так как ∠B=∠B1, сторона B1C1 наложится на сторону BC.
Точка С1 принадлежит как стороне A1С1, так и стороне B1C1, поэтому С1 лежит и на луче AC, и на луче CB.
Лучи AC и CB пересекаются в точке C. Следовательно, точка С1 совместится с точкой C.
Значит, сторона A1С1 совместится со стороной AC, а сторона B1C1 — со стороной BC.
Таким образом, при наложении треугольники ABC и A1B1C1 полностью совместятся.
А это означает, что ΔABC= ΔA1B1C1 (по определению).
Что и требовалось доказать.
Значит обозначаем окантовка =Х
Ширина стала =2х;
Длина= стала 2х;
Площадь с окантовкой стала=558см^2
S -площадь прямоугольника; a -ширина b -длина;
S=a•b;
Уравнение
(10+2х)•(20+2х)=504
10•20+10•2х+2х•20+2х•2х-504=0
200+20х+40х+4х^2-504=0
4х^2+60х-304=0
Разделим на 2 все
2х^2+30х-152=0
D=b^2-4•a•c= 30^2- 4•2•(-152)=
900-8•(-152)=900+1216=2116
X1,2=(-b+-корень из D)/(2•a);
X1=(-30-46)/2•2=-76/4=-19не подходит;
Х2=(-30+46)/2•2=16/4=4 см
ответ: ширина окантовки 4 см