Проекции катетов на гипотенузу - это отрезки, на которые делит гипотенузу высота, опущенная на нее из прямого угла. Известно, что квадрат этой высоты равен произведению величин отрезков гипотенузы, то есть h = √(1*3) = √3. Тогда в прямоугольных треугольниках, на которые делится исходный прямоугольный треугольник высотой из прямого угла на гипотенузу, имеем: тангенсы острых углов исходного треугольника равны отношению противолежащего катета к прилежащему, то есть √3/1 и √3/3. Значит эти углы соответственно равны 60° и 30°.
Решение
Высота есть среднее пропорциональное между проекциями катетов на гипотенузу, поэтому она равна СМ=√(АМ*МВ)=√(5.4*9.6)=√51.84=7.2/см/,
Зная высоту и проекцию, можно найти катеты, СВ=√(СМ²+МВ²)=√(7.2²+5.4²)=√(51.84+29.16)=√81=9/см/.
АС=√(СМ²+АМ²)=√(7.2²+9.6²)=√(51.84+92.16)=√144=12/см/, зная катеты, найдем гипотенузу. АВ=√(АС²+СВ²)=√(12²+9²)=√(144+81)=√225=15/см/
Зная катет и противолежащий угол, можно найти синус этого угла.
например угла А
sin∠A=СВ/АВ=9/15=3/5=0.6
ответ СМ=7.2 см
АС=12см
СВ=9 см
sin∠A=0.6
Дано, рисунок во вложении