1)четырехугольник - это квадрат. Его сторона равна диаметру вписанной окружности, т. е 2R, где R- радиус вписанной окружности. Тогда площадь квадрата равна
Sкв = 4R^2
2) Разобьем шестиугольник на 6 треугольников отрезками, выходящими из центра к вершинам шестиугольника. Все эти треугольники правильные и равны между собой, т.к. угол при вершине 60 градусов и они равнобедренные, а высотой треугольника является радиус вписанной окружности, т. е. R. Сторону треугольников обозначим через X. Рассмотрим один из треугольников. Высота является в нем и медианой. Тогда, рассмотрев треугольник, образованный отрезком, проведенным из центра, половиной основания и высотой, имеем по теореме Пифагора
R^2 +(X/2)^2 = X^2, откуда X^2= 4R^2/3, X =2R/корень из 3 Площадь треугольника Sтр=X*R/2= 2R*R/2*корень из 3 =R^2/корень из 3 Площадь шестиугольника Sш =6Sтр= 6R^2/корень из 3 = 2* корень из 3* R^2
Отношение площадей Sкв/Sш = 4R2/2* корень из 3* R^2 = 2/корень из 3
Sкв = 4R^2
2) Разобьем шестиугольник на 6 треугольников отрезками, выходящими из центра к вершинам шестиугольника. Все эти треугольники правильные и равны между собой, т.к. угол при вершине 60 градусов и они равнобедренные, а высотой треугольника является радиус вписанной окружности, т. е. R. Сторону треугольников обозначим через X. Рассмотрим один из треугольников.
Высота является в нем и медианой. Тогда, рассмотрев треугольник, образованный отрезком, проведенным из центра, половиной основания и высотой, имеем по теореме Пифагора
R^2 +(X/2)^2 = X^2, откуда
X^2= 4R^2/3, X =2R/корень из 3
Площадь треугольника
Sтр=X*R/2= 2R*R/2*корень из 3 =R^2/корень из 3
Площадь шестиугольника
Sш =6Sтр= 6R^2/корень из 3 = 2* корень из 3* R^2
Отношение площадей
Sкв/Sш = 4R2/2* корень из 3* R^2 = 2/корень из 3
где AA и BB – некоторые числа. При этом коэффециенты AA и BB одновременно не равны нулю, так как тогда уравнение теряет смысл.
Если C=0C=0, а AA и BB отличны от нуля, то прямая проходит через через начало координат.
Если A=0A=0, а BB и CC отличны от нуля, то прямая параллельна оси OxOx.
Если B=0B=0, а AA и CC отличны от нуля, то прямая параллельна оси OyOy.
Если B=C=0B=C=0, а AA отличен от нуля, то прямая совпадает с осью OyOy.
Если A=C=0A=C=0, а BB отличен от нуля, то прямая совпадает с осью OxOx.