пирамида КАВСД, К-вершина, АВСД-основание трапеция, АВ=СД, АД=8, ВС=6, О-центр основания - центр вписанной окружности, в трапецию вписывается окружность тогда АД+ВС=АВ+СД, 8+6=2*АВ, АВ=СД=7, проводим высоты ВМ и СТ на АД, МВСТ-прямоугольник ВС=МТ=6, треугольнике АВМ=треугольник ТСД как прямоугольные по гипотенузе и острому углу (уголА=уголД), АМ=ТД=(АД-МТ)/2=(8-6)/2=1, треугольник АСМ прямоугольный, ВМ²=АС²-АМ²=49-1=48, ВМ=4√3=диаметр окружности,
проводим радиус ОН=1/2ВМ=2√3 перпендикулярный в точку касания на АД
проводим апофему КН, треугольник КОН прямоугольный, уголКНО=30, КН=ОН/cos30=2√3/(√3/2)=4, площадь боковая=1/2*периметрАВСД*КН=1/2*(7+7+8+6)*4=56
Если рассмотреть площади треугольников АВС и BCD, то нетрудно заметить: S(ABC) = S(ABP) + S(BPC) S(BCD) = S(CPD) + S(BPC) --- видим одинаковые слагаемые))) т.е. доказав равенство площадей треугольников АВС и ВСD, мы докажем требуемое треугольники АВС и ВСD имеют общую сторону... если в каждом из этих треугольников провести высоты к этой общей стороне (ВС))), то эти высоты окажутся равными --- как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции))) значит и площади равны...
пирамида КАВСД, К-вершина, АВСД-основание трапеция, АВ=СД, АД=8, ВС=6, О-центр основания - центр вписанной окружности, в трапецию вписывается окружность тогда АД+ВС=АВ+СД, 8+6=2*АВ, АВ=СД=7, проводим высоты ВМ и СТ на АД, МВСТ-прямоугольник ВС=МТ=6, треугольнике АВМ=треугольник ТСД как прямоугольные по гипотенузе и острому углу (уголА=уголД), АМ=ТД=(АД-МТ)/2=(8-6)/2=1, треугольник АСМ прямоугольный, ВМ²=АС²-АМ²=49-1=48, ВМ=4√3=диаметр окружности,
проводим радиус ОН=1/2ВМ=2√3 перпендикулярный в точку касания на АД
проводим апофему КН, треугольник КОН прямоугольный, уголКНО=30, КН=ОН/cos30=2√3/(√3/2)=4, площадь боковая=1/2*периметрАВСД*КН=1/2*(7+7+8+6)*4=56
то нетрудно заметить:
S(ABC) = S(ABP) + S(BPC)
S(BCD) = S(CPD) + S(BPC) --- видим одинаковые слагаемые)))
т.е. доказав равенство площадей треугольников АВС и ВСD,
мы докажем требуемое
треугольники АВС и ВСD имеют общую сторону...
если в каждом из этих треугольников провести высоты к этой общей стороне (ВС))),
то эти высоты окажутся равными --- как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции)))
значит и площади равны...