В параллелограмме противоположные углы равны по определению.
Так как противоположные стороны параллелограмма параллельны, то сумма его внутренних односторонних углов, как углов при параллельных прямых и секущей, равна 180º.
∠ВАД+∠СВА=180º
Биссектрисы параллелограмма делят каждый его угол пополам.
Рассмотрим ∆ АВК.
∠ВАК=¹/₂ ∠ВАД
∠КВА=¹/₂∠СВА
¹/₂ ∠ВАД+¹/₂∠СВА =¹/₂ (∠ВАД+∠СВА)=180º:2=90º
Сумма углов треугольника равна 180º,⇒
∠ВКА=в180°-90°=90°
Вертикальный ему угол МКТ четырехугольника КМНТ равен ему и тоже прямой.
Аналогично доказывается, что угол МНТ равен 90º как вертикальный углу СНД,
В ∆ АМД сумма половин внутренних односторонних углов ВАД и СДА равна 90º. ⇒
Угол АМД равен 90º.
Аналогично угол ВТС =90º
Все углы четырехугольника КМНТ, образованного при пересечении биссектрис углов параллелограмма - прямые. ⇒
В параллелограмме противоположные углы равны по определению.
Так как противоположные стороны параллелограмма параллельны, то сумма его внутренних односторонних углов, как углов при параллельных прямых и секущей, равна 180º.
∠ВАД+∠СВА=180º
Биссектрисы параллелограмма делят каждый его угол пополам.
Рассмотрим ∆ АВК.
∠ВАК=¹/₂ ∠ВАД
∠КВА=¹/₂∠СВА
¹/₂ ∠ВАД+¹/₂∠СВА =¹/₂ (∠ВАД+∠СВА)=180º:2=90º
Сумма углов треугольника равна 180º,⇒
∠ВКА=в180°-90°=90°
Вертикальный ему угол МКТ четырехугольника КМНТ равен ему и тоже прямой.
Аналогично доказывается, что угол МНТ равен 90º как вертикальный углу СНД,
В ∆ АМД сумма половин внутренних односторонних углов ВАД и СДА равна 90º. ⇒
Угол АМД равен 90º.
Аналогично угол ВТС =90º
Все углы четырехугольника КМНТ, образованного при пересечении биссектрис углов параллелограмма - прямые. ⇒
четырехугольник КМНТ - прямоугольник.
РЕШЕНИЕ
Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания.
-боковые ребра правильной пирамиды равны;
-все боковые грани — равные равнобедренные треугольники
высота пирамиды Н=l*sin(b)
основание пирамиды равносторонний треугольник
все углы равны - 60 град
все стороны равны -а
ВК - медиана, биссектриса, высота
ВО=l*cos(b)
BO=2/3*BK
BK=3/2*BO=3/2* l*cos(b)
сторона основания a =BK/sin60=3/2* l*cos(b)/(√3/2)= √3*l*cos(b)
высота боковой грани SM=√(SB^2-MB^2)=√(l^2-(a/2)^2)=√(l^2-((√3*l*cos(b))/2)^2)=
=1/2*l*√(4-3cos^2(b))
выразим ПЛОЩАДЬ треугольника SDB
- через ВЫСОТУ и ОСНОВАНИЕ двумя тогда имеем отношение BD*SM =SB*DF => DF= BD*SM /SB
h=DF=a* 1/2*l*√(4-3cos^2(b)) / l =√3*l*cos(b) *1/2*l*√(4-3cos^2(b)) / l=
=√3/2 *l*cos(b)√(4-3cos^2(b))
теорема косинусов
a^2 = h^2+h^2-2h^2*cosA =2h^2(1-cosA)
cosA=1 - a^2 / (2*h^2)
cosA =1- (√3*l*cos(b))^2 / (2*√3/2 *l*cos(b)√(4-3cos^2(b)))^2 = 1 - 1 / (4-3cos^(b))
A = arccos (1 - 1 / (4-3cos^(b)) )
ответ < A = arccos (1 - 1 / (4-3cos^(b)) ) ; Н=l*sin(b)