1) Верно, окружность - геометрическая фигура однозначно; 2) Неверно, касательной называется прямая, которая имеет с окружностью только одну общую точку, если точек две - имеем дело с хордой; 3) Верно, центр вписанной окружности равноудалён от сторон треугольника - все точки равноудалённые от сторон угла принадлежат биссектрисе угла, место пересечения биссектрис равноудалено от всех сторон треугольника - значит центр вписанной окружности; 4) Верно, здесь небольшая логическая ловушка: описанная окружность обязательно проходит через все три вершины треугольника, утверждение "хотя бы две" является включением в первое высказывание - тоже истинно. ответ: 134.
Даны вершины А(-2; 1), В(1; 4), С(5; 0) i D(2; -3).
Фигура АВСД прямоугольник, если стороны попарно равны и диагонали равны.
Длины сторон.
AB = √((xB-xA)² + (yB-yA)²) = √18 = 4,242640687
BC = √((xC-xB)² + (yC-yB)²) = √32 = 5,656854249
CD = √((xD-xC)² + (yD-yC)²) = √18 = 4,242640687
AD = √((xC-xA)² + (yC-yA)²) = √32 = 5,656854249 .
Длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = √50 = 7,071067812
BD = √((xD-xB)² + (yD-yB)²) = √50 = 7,071067812 .
Как видим, эти свойства подтверждены, АВСД - прямоугольник.
2) Неверно, касательной называется прямая, которая имеет с окружностью только одну общую точку, если точек две - имеем дело с хордой;
3) Верно, центр вписанной окружности равноудалён от сторон треугольника - все точки равноудалённые от сторон угла принадлежат биссектрисе угла, место пересечения биссектрис равноудалено от всех сторон треугольника - значит центр вписанной окружности;
4) Верно, здесь небольшая логическая ловушка: описанная окружность обязательно проходит через все три вершины треугольника, утверждение "хотя бы две" является включением в первое высказывание - тоже истинно.
ответ: 134.