а) 332,8 см².
б) 24+4√2 дм; 40 дм².
Объяснение:
а) ABCD - трапеция. СЕ - высота. В ΔCED ∠D=60*, ∠CED=90*, ∠ECD=30*.
MN=16 см - средняя линия. Высота СЕ делит ее на отрезка MK=10 см и KN=6 см (16-10=6 см).
KN является средней линией треугольника CED и равна половине основания ЕВ. Следовательно ED=2KN=2*6=12 см.
Найдем высоту СЕ=h= 12/tg30* = 12 / 0.577 =20.8 см.
S=h*MN=20,8*16=332,8 см ² .
***
б) ABCD - трапеция. ∠С=135*. СЕ - высота делит угол С на 2 угла 135*=90*+45*. Следовательно Δ CDE - равнобедренный СЕ=ED=12-8=4 дм.
Найдем СD=√CE²+DE² =√4²+4²= 4√2 дм.
Периметр Р=АВ+ВС+CD+AD=4+8+4√2+12= 24+4√2 дм.
Площадь равна S= h(a+b)/2=4(12+8)/2=40 дм ².
опустив высоту из тупого угла трапеции на большее основание, видим, что высота трапеции, равная перпендикулярной боковой стороне, равна разности большего и меньшего оснований: 12дм - 8дм = 4дм, т.к. получившийся треугольник равнобедренный .
Наклонная боковая сторона равна 4дм : cos45° = 4 : 0.5√2 = 4√2 (дм)
Периметр трапеции:
8 + 12 + 4 + 4√2 = 24 + 4√2 (дм) ≈ 24 + 5,41 = 29,41 (дм)
Площадь трапеции равна полусумме оснований, умноженной на высоту
0,5(12 + 8)· 4 = 40(дм²)
а) 332,8 см².
б) 24+4√2 дм; 40 дм².
Объяснение:
а) ABCD - трапеция. СЕ - высота. В ΔCED ∠D=60*, ∠CED=90*, ∠ECD=30*.
MN=16 см - средняя линия. Высота СЕ делит ее на отрезка MK=10 см и KN=6 см (16-10=6 см).
KN является средней линией треугольника CED и равна половине основания ЕВ. Следовательно ED=2KN=2*6=12 см.
Найдем высоту СЕ=h= 12/tg30* = 12 / 0.577 =20.8 см.
S=h*MN=20,8*16=332,8 см ² .
***
б) ABCD - трапеция. ∠С=135*. СЕ - высота делит угол С на 2 угла 135*=90*+45*. Следовательно Δ CDE - равнобедренный СЕ=ED=12-8=4 дм.
Найдем СD=√CE²+DE² =√4²+4²= 4√2 дм.
Периметр Р=АВ+ВС+CD+AD=4+8+4√2+12= 24+4√2 дм.
Площадь равна S= h(a+b)/2=4(12+8)/2=40 дм ².